美國(guó)科學(xué)家最近在對(duì)神經(jīng)元的研究中觀察到,,軸突可以將信號(hào)傳回到神經(jīng)元的細(xì)胞體,,不同神經(jīng)元的軸突之間也能互相“交流”,神經(jīng)元還能在較長(zhǎng)時(shí)間內(nèi)將外部刺激存儲(chǔ)和整合在軸突內(nèi),。這些新發(fā)現(xiàn)顛覆了傳統(tǒng)的教科書(shū)理論,。
神經(jīng)元是構(gòu)成神經(jīng)系統(tǒng)結(jié)構(gòu)和功能的基本單位,它由細(xì)胞體和細(xì)胞突起(分為樹(shù)突和軸突)構(gòu)成,。傳統(tǒng)理論中,,每個(gè)神經(jīng)元可以有一個(gè)或多個(gè)樹(shù)突,用以接受刺激并將興奮信號(hào)傳入細(xì)胞體。每個(gè)神經(jīng)元只有一個(gè)軸突,,可以把興奮信號(hào)從細(xì)胞體傳送到另一個(gè)神經(jīng)元或其他組織,,如肌肉或腺體。該研究的主要負(fù)責(zé)人,、美國(guó)西北大學(xué)的神經(jīng)生物學(xué)尼爾森·斯普斯頓表示,,軸突也能向細(xì)胞體發(fā)送信號(hào)這一發(fā)現(xiàn)讓他們非常吃驚,它顛覆了教科書(shū)中的觀點(diǎn),。
科學(xué)家同時(shí)證實(shí),,不同神經(jīng)元的軸突之間也能互相“交流”。而且,,在發(fā)送信號(hào)前,,軸突能自行進(jìn)行神經(jīng)計(jì)算,無(wú)需細(xì)胞體或樹(shù)突的參與,。此前科學(xué)家認(rèn)為,,在軸突內(nèi)的神經(jīng)計(jì)算中,一個(gè)神經(jīng)元的軸突會(huì)同另一個(gè)神經(jīng)元的樹(shù)突或細(xì)胞體相連,,而不會(huì)同軸突相連,。
軸突之間相互交流的現(xiàn)象是斯普斯頓團(tuán)隊(duì)在對(duì)老鼠的海馬體和新皮層中單個(gè)神經(jīng)元進(jìn)行研究時(shí)觀察到的??茖W(xué)家希望接下來(lái)能弄清這種行為究竟是個(gè)別反?,F(xiàn)象還是在很多神經(jīng)細(xì)胞內(nèi)都會(huì)發(fā)生。斯普斯頓表示,,他們并不認(rèn)為這種情況很罕見(jiàn),,但對(duì)他們來(lái)說(shuō),了解這種現(xiàn)象在什么情況下發(fā)生以及如何發(fā)生更為關(guān)鍵,。
此外,,斯普斯頓和同事還首次發(fā)現(xiàn),即使細(xì)胞體或樹(shù)突內(nèi)沒(méi)有受到刺激,,單個(gè)神經(jīng)元也能靠軸突傳送信號(hào),。實(shí)驗(yàn)中,他們對(duì)一個(gè)神經(jīng)元進(jìn)行電刺激,,歷時(shí)一兩分鐘,,每隔十秒刺激一次。在這段時(shí)間內(nèi),,該神經(jīng)元持續(xù)發(fā)送信號(hào),,但當(dāng)電刺激終止時(shí),神經(jīng)元仍然會(huì)發(fā)送信號(hào),,歷時(shí)一分鐘,。斯普斯頓表示,,神經(jīng)元在沒(méi)有刺激的情況下還能持續(xù)發(fā)送信號(hào),令人很難想象,。這表明,,神經(jīng)元能在較長(zhǎng)時(shí)間內(nèi)(從幾十秒到數(shù)分鐘不等)將外部刺激存儲(chǔ)和整合在軸突內(nèi)。
這個(gè)獨(dú)特的神經(jīng)功能可能與記憶有關(guān),,也可能同疾病有關(guān),。有些受到抑制的神經(jīng)元持續(xù)發(fā)送信號(hào)或許可以抵消大腦內(nèi)極度活躍的狀態(tài),比如預(yù)防癲癇發(fā)作過(guò)程中無(wú)法抑制的興奮等,。
對(duì)于研究癲癇,、自閉癥、老年癡呆癥和精神分裂癥等神經(jīng)疾病的科學(xué)家來(lái)說(shuō),,更深層地理解普通神經(jīng)元的工作原理非常重要,。該研究發(fā)表在2月份的《自然·神經(jīng)科學(xué)》雜志上。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature Neuroscience, 2010; 14 (2): 200 DOI: 10.1038/nn.2728
Slow integration leads to persistent action potential firing in distal axons of coupled interneurons
Mark E J Sheffield,1 Tyler K Best,1 Brett D Mensh,2 William L Kath1, 3 & Nelson Spruston1
The conventional view of neurons is that synaptic inputs are integrated on a timescale of milliseconds to seconds in the dendrites, with action potential initiation occurring in the axon initial segment. We found a much slower form of integration that leads to action potential initiation in the distal axon, well beyond the initial segment. In a subset of rodent hippocampal and neocortical interneurons, hundreds of spikes, evoked over minutes, resulted in persistent firing that lasted for a similar duration. Although axonal action potential firing was required to trigger persistent firing, somatic depolarization was not. In paired recordings, persistent firing was not restricted to the stimulated neuron; it could also be produced in the unstimulated cell. Thus, these interneurons can slowly integrate spiking, share the output across a coupled network of axons and respond with persistent firing even in the absence of input to the soma or dendrites.