英國研究人員開發(fā)出一種新技術(shù),可助研究人員繪制出大腦神經(jīng)連接的線路并弄清其主要功能,,使揭開大腦之謎,、開發(fā)出計(jì)算機(jī)大腦模型的夢想離現(xiàn)實(shí)又近了一步。相關(guān)論文發(fā)表在4月11日的《自然》雜志網(wǎng)站上,。
這項(xiàng)研究屬于“神經(jīng)連接組學(xué)”(connectomics),,是神經(jīng)科學(xué)領(lǐng)域近年來剛剛興起的一個新興學(xué)科。與基因組學(xué)要研究,、繪制人體基因圖譜類似,,神經(jīng)連接組學(xué)的基礎(chǔ)是研究和繪制出大腦神經(jīng)細(xì)胞連接(即突觸)的圖譜,類似于電腦等電子設(shè)備中的布線,??茖W(xué)家希望通過繪制出這些線路并弄清其發(fā)揮功能的方式,了解大腦產(chǎn)生認(rèn)知,、感覺以及思想的過程和機(jī)理,,進(jìn)而為阿爾茨海默病、精神分裂癥以及中風(fēng)等疾病的治療提供幫助,。
然而,,對于動物身上最為精密和負(fù)責(zé)的器官——大腦來說這絕非易事。據(jù)了解,,在大腦中大約有1000億個神經(jīng)元,,其中每一個又與數(shù)千個其他神經(jīng)細(xì)胞相連,如果這么計(jì)算的話,,大腦里至少有150萬億個突觸,。
由倫敦大學(xué)學(xué)院(UCL)開發(fā)的這項(xiàng)技術(shù),通過使用一種高分辨率的成像裝置實(shí)現(xiàn)了這一目的,,并繪制出了小鼠視覺皮層的部分神經(jīng)連接的“布線圖”,。
據(jù)負(fù)責(zé)該項(xiàng)研究的湯姆·馬斯琪·弗洛格爾博士介紹,他們將注意力集中在了具有數(shù)千個神經(jīng)元和數(shù)百萬個不同連接的小鼠視覺皮層,。通過一個相同的組織切片,,研究人員首先利用高分辨率成像技術(shù)探測小鼠大腦視覺皮質(zhì)中神經(jīng)細(xì)胞對特定刺激的反應(yīng),然后在一個神經(jīng)元上施加微電流刺激,,并觀察通過突觸相連的其他神經(jīng)的反應(yīng),。如此反復(fù),最終就可以追蹤視覺皮質(zhì)中神經(jīng)細(xì)胞的功能及連接狀態(tài),。除視覺皮層外,,研究人員希望該技術(shù)還能幫助他們繪制出大腦中主管觸覺、聽覺以及運(yùn)動系統(tǒng)的神經(jīng)突觸線路,。
弗洛格爾說:“我們即將揭開神秘復(fù)雜的大腦,。一旦弄清了位于大腦中不同層次的神經(jīng)突觸的功能和連接方式,我們就能用計(jì)算機(jī)來對這一世界上最復(fù)雜最為精密的器官進(jìn)行模擬,。”但他同時也承認(rèn):“要實(shí)現(xiàn)這一目的還有大量的工作要做,,科學(xué)家們?yōu)榇诉B續(xù)工作若干年后可能才有突破,并且除此之外,,一臺速度超快運(yùn)算能力超強(qiáng)的計(jì)算機(jī)也將是必不可少,。”
英國維康信托基金會(Wellcome Trust)神經(jīng)系統(tǒng)科學(xué)及心理健康部負(fù)責(zé)人約翰·威廉斯說:“理解大腦內(nèi)部工作原理是科學(xué)的終極目標(biāo)之一。新研究為神經(jīng)系統(tǒng)科學(xué)研究提供了一個重要工具,,可以幫助科學(xué)家們在對大腦的研究中總攬全局并獲得必要的指引,。”(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09880
Functional specificity of local synaptic connections in neocortical networks
Ho Ko,1, 2 Sonja B. Hofer,1, 2 Bruno Pichler,1, 3 Katherine A. Buchanan,1 P. Jesper Sj?str?m1 & Thomas D. Mrsic-Flogel1
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli1, 2, 3, 4. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.