美國(guó)羅徹斯特大學(xué)、華盛頓大學(xué)圣路易斯分校和貝勒醫(yī)學(xué)院通過實(shí)驗(yàn)研究,,驗(yàn)證了大腦形成客觀認(rèn)知時(shí)處理復(fù)雜且迅速變化信號(hào)的加權(quán)規(guī)則。相關(guān)論文在線發(fā)表于《自然—神經(jīng)科學(xué)》上,。
人們時(shí)刻經(jīng)受著各種信息的轟炸,,眼睛、耳朵,、鼻子,、舌頭和皮膚不斷地將不同甚至互相矛盾的感覺信號(hào)傳送給大腦,大腦要整合多渠道的感官信息,,才能盡量精確地形成對(duì)客觀世界的認(rèn)知,。比如在IMAX劇場(chǎng)的巨幅畫面中出現(xiàn)了飛機(jī)轉(zhuǎn)彎的場(chǎng)景,你也會(huì)緊緊抓住座椅,。大幅的視覺輸入信號(hào)讓你覺得自己也在動(dòng),,但內(nèi)耳中的平衡器卻不斷向你傳達(dá)著平衡信號(hào),讓你知道自己正安全地坐在劇場(chǎng)椅子上,。
以往的計(jì)算理論認(rèn)為,,大腦通過加權(quán)規(guī)則來預(yù)計(jì)點(diǎn)亮哪些神經(jīng)元。最新研究不僅證明了這一理論,,還對(duì)該理論進(jìn)行了擴(kuò)展,。研究人員解釋說,單個(gè)神經(jīng)元執(zhí)行簡(jiǎn)單計(jì)算,,一次簡(jiǎn)單計(jì)算就是一種加權(quán)平均,,神經(jīng)元必須對(duì)每種感覺賦予正確的權(quán)重。新研究為這一賦權(quán)過程提供了首個(gè)直接證據(jù),。
他們?cè)O(shè)計(jì)了一套虛擬—現(xiàn)實(shí)系統(tǒng)試驗(yàn),,給志愿者提供兩個(gè)反向信號(hào):一種是在計(jì)算機(jī)屏幕上用小點(diǎn)模擬的向前運(yùn)動(dòng),另一種用運(yùn)動(dòng)平臺(tái)讓志愿者的身體產(chǎn)生真實(shí)運(yùn)動(dòng),。小點(diǎn)運(yùn)動(dòng)點(diǎn)的數(shù)量在隨機(jī)改變,,以此改變屏幕視覺信號(hào)相對(duì)于真實(shí)運(yùn)動(dòng)信號(hào)對(duì)大腦的可靠度,然后讓志愿者指出自己的運(yùn)動(dòng)方向,。
研究顯示,,數(shù)百萬的神經(jīng)元執(zhí)行重復(fù)性相似計(jì)算時(shí),,大腦知道哪種感覺信號(hào)更加重要。“從根本上而言,,大腦能把高級(jí)行為任務(wù)破解為一系列簡(jiǎn)單的操作,,讓多個(gè)神經(jīng)元同時(shí)執(zhí)行。”論文合著者,、羅徹斯特大學(xué)腦與認(rèn)知科學(xué)教授格雷戈·迪安杰利斯說,。
在實(shí)驗(yàn)中,他們發(fā)現(xiàn)神經(jīng)元獲得的權(quán)重和理論預(yù)測(cè)略有差異,,而這一差異正好解釋了不同志愿者在相同實(shí)驗(yàn)條件下的行為差異,。迪安杰利斯說:“如果能預(yù)測(cè)這些微小差異,就能在單個(gè)神經(jīng)元的初級(jí)計(jì)算和各種詳細(xì)行為之間建立起聯(lián)系,。”
研究人員還指出,,該發(fā)現(xiàn)有望為老年癡呆癥或其他有關(guān)個(gè)體自感神經(jīng)系統(tǒng)紊亂方面的疾病帶來新療法。深入理解大腦連接不同感覺信號(hào)的機(jī)制,,也能幫助工程師們給機(jī)器人設(shè)計(jì)出更復(fù)雜的人造神經(jīng)系統(tǒng),。(生物谷Bioon.com)
doi:10.1038/nn.2983
PMC:
PMID:
Neural correlates of reliability-based cue weighting during multisensory integration
Christopher R Fetsch, Alexandre Pouget, Gregory C DeAngelis & Dora E Angelaki
Integration of multiple sensory cues is essential for precise and accurate perception and behavioral performance, yet the reliability of sensory signals can vary across modalities and viewing conditions. Human observers typically employ the optimal strategy of weighting each cue in proportion to its reliability, but the neural basis of this computation remains poorly understood. We trained monkeys to perform a heading discrimination task from visual and vestibular cues, varying cue reliability randomly. The monkeys appropriately placed greater weight on the more reliable cue, and population decoding of neural responses in the dorsal medial superior temporal area closely predicted behavioral cue weighting, including modest deviations from optimality. We found that the mathematical combination of visual and vestibular inputs by single neurons is generally consistent with recent theories of optimal probabilistic computation in neural circuits. These results provide direct evidence for a neural mechanism mediating a simple and widespread form of statistical inference.