加利福尼亞大學圣地亞哥醫(yī)學院的研究人員首次在散發(fā)性遺傳性老年癡呆癥在體模型上創(chuàng)造了細胞衍生的干細胞,,利用源自患可怕神經(jīng)退行性疾病患者的誘導(dǎo)多功能干細胞,。
"此前,,從來沒有在皿中創(chuàng)造過高度純化、功能性的人類老年癡呆癥神經(jīng)元",,研究的通訊作者Lawrence Goldstein博士說,他是細胞與分子醫(yī)學系的教授,也是霍華德 · 休斯醫(yī)學研究所 的研究員,、加利福尼亞大學圣地亞哥干細胞計劃的主要負責人,"這是第一步,。這些不是完全的模型,。它們是一種觀點的證據(jù)。但是,,現(xiàn)在我們知道怎樣制造它們,。這要求格外小心與勤奮,,實際上是誘導(dǎo)一致行為的嚴格質(zhì)量控制,但是我們能做到",。
這個壯舉發(fā)表在1月25日版的雜志Nature上,,代表著一種研究AD病因的新的、急需的方法,,AD是一種折磨著近540萬美國人的進行性癡呆,。更重要的是,活細胞為開發(fā)與測試此病治療藥物提供了一種前所未有的工具,。
"我們正在研究人類大腦,。你們在病人上不能只做活組織檢查", Goldstein說,,"相反,,研究人員不得不圍繞著它做工作,如在非神經(jīng)元細胞中模仿此疾病的某些方面或用有限的動物模型進行模仿,。這兩種方法都不令人滿意,。"
Goldstein和同事們從皮膚組織中提取初級成纖維細胞,所用的皮膚組織分別取自兩個患家族性AD(與一種遺傳易感性有關(guān)的罕見,、早發(fā)性疾?。┑牟∪恕蓚€散發(fā)型AD患者(病因未知的常見形式)和兩個無已知神經(jīng)學問題的正常人,。他們將成纖維細胞重編程為誘導(dǎo)多功能干細胞(iPSC),,這些細胞能分化成為起作用的神經(jīng)元。
源自老年癡呆癥患者的iPSC衍生神經(jīng)元展現(xiàn)出正常的電生理活性,,形成功能性突觸聯(lián)系,,精確地顯示出AD信號燈作用。具體地說,,它們擁有與疾病相關(guān)的高于正常水平的蛋白質(zhì),。
用體外的老年癡呆癥神經(jīng)元,科學家們能更深入地研究AD如何開始發(fā)病,,繪制最后破壞與如記憶般的認知元件相關(guān)的大腦細胞的生化過程,。目前,AD研究大部分依賴于死后組織的研究,,這些組織往往是長時間損傷后的,。
"健康神經(jīng)元與老年癡呆癥神經(jīng)元間的區(qū)別是細微的", Goldstein說,,"這基本上可歸結(jié)為長時間累積的具有災(zāi)難性后果的低水平損傷",。
研究人員已經(jīng)得到一些驚人的研究發(fā)現(xiàn)。"在這項研究中,我們展示了老年癡呆癥神經(jīng)元中的早期變化,,這些變化被認為是疾病過程中的始發(fā)事件,,證明不是那么明顯", Goldstein說,,補充說他們發(fā)現(xiàn)了一件發(fā)揮更大作用的不同早期事件,。
科學家們也發(fā)現(xiàn),來自2個散發(fā)型AD患者其中一個的神經(jīng)元展現(xiàn)出可能與此疾病相關(guān)的生化改變,。這個發(fā)現(xiàn)表明,,這種疾病可能有一些亞類,將來潛在的治療方法可能針對于AD患者的特殊群體,。
雖然只是個開始,,Goldstein強調(diào)說,iPSC源性老年癡呆癥神經(jīng)元在絕斗中呈現(xiàn)出巨大的機會,。"在結(jié)束的那一天,,我需要用象這些一樣的細胞來更好地理解老年癡呆癥,來尋找治療藥物,。我們需要做我們能做的每一件事,,因為這個疾病的花費太大、太可怕以致于不敢考慮,。沒有解決辦法 ,,它將在感情上、經(jīng)濟上擊潰我們,。"(生物谷bioon.com)
doi:10.1038/nature10821
PMC:
PMID:
Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells
Mason A. Israel, Shauna H. Yuan, Cedric Bardy, Sol M. Reyna, Yangling Mu, Cheryl Herrera,Michael P. Hefferan, Sebastiaan Van Gorp, Kristopher L. Nazor, Francesca S. Boscolo, Christian T. Carson, Louise C. Laurent, Martin Marsala, Fred H. Gage, Anne M. Remes, Edward H. Koo &Lawrence S. B. Goldstein
Abstract Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-β precursor protein gene1 (APP; termed APPDp), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APPDp patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1-40), phospho-tau(Thr?231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APPDp and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr?231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients.