對(duì)于肉眼來(lái)說(shuō),,人類(lèi)大腦最顯著的特點(diǎn)便是其波浪般的腫塊和溝槽模式。
然而發(fā)表在3月30日出版的美國(guó)《Science》雜志上的一項(xiàng)最新研究指出,這些曲線當(dāng)中實(shí)際上是由大約成直角的彼此交叉的神經(jīng)纖維構(gòu)成的網(wǎng)格(如圖所示)。
研究人員利用一種新近開(kāi)發(fā)出的方法——名為擴(kuò)散光譜成像技術(shù)——推斷了人類(lèi)活體大腦中的神經(jīng)纖維的位置。
這些掃描揭示了一種有序的神經(jīng)纖維編織方式——這是一種比許多科學(xué)家之前所預(yù)想的要簡(jiǎn)單得多的結(jié)構(gòu),。
研究人員對(duì)4種靈長(zhǎng)類(lèi)動(dòng)物進(jìn)行的掃描得出了一個(gè)類(lèi)似的模型。
美國(guó)波士頓大學(xué)的腦神經(jīng)學(xué)家DouglasL.Rosene和同事推斷,,這種像網(wǎng)格一樣的結(jié)構(gòu)或許在大腦的發(fā)育過(guò)程中是有利的,,它的作用相當(dāng)于高速公路的車(chē)道標(biāo)記,從而幫助生長(zhǎng)中的神經(jīng)纖維找到通往目的地的道路,。
這些發(fā)現(xiàn)為人們提供了一種分析大腦的新的框架,,例如,科學(xué)家或許能夠用這一坐標(biāo)系統(tǒng)來(lái)精準(zhǔn)地查明患病和健康大腦之間的差異,。
大腦是由兩種組織構(gòu)成的,,即由具有特定功能的神經(jīng)細(xì)胞組成的灰質(zhì),以及由長(zhǎng)長(zhǎng)的相互連接的纖維組成的白質(zhì)構(gòu)成,。這些纖維的形狀和軌跡——即它們?cè)谄湫谐讨性诤翁幖叭绾谓徊婧拖嘤?mdash;—長(zhǎng)期以來(lái)一直被認(rèn)為是復(fù)雜且難以掌握的,。而新的發(fā)現(xiàn)表明,這些纖維的形狀是有組織的并具有幾何形狀,,且驚人的簡(jiǎn)單,。(生物谷 bioon.com)
doi:10.1126/science.1215280
PMC:
PMID:
The Geometric Structure of the Brain Fiber Pathways
Wedeen, Van J.; Rosene, Douglas L.; Wang, Ruopeng; Dai, Guangping; Mortazavi, Farzad; Hagmann, Patric; Kaas, Jon H.; Tseng, Wen-Yih I
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.