很久以來(lái),,人們認(rèn)為大腦是一團(tuán)纏繞的神經(jīng)纖維,,但研究人員最近發(fā)現(xiàn),腦中的神經(jīng)纖維像往右傾斜的交叉棋盤,。如今,,一些精妙細(xì)節(jié)作為大腦成像研究的一部分揭示了大腦的網(wǎng)絡(luò)結(jié)構(gòu),它們借助于新的磁共振成像(MRI)掃描儀,。研究結(jié)果發(fā)表在《科學(xué)》Science 期刊上,。
平行的神經(jīng)纖維往右傾斜形成交叉路徑,進(jìn)而形成2維折疊的神經(jīng)層面
猴子大腦中神經(jīng)纖維的3維串接圖
馬薩諸塞州總醫(yī)院(MGH)Van Wedeen領(lǐng)導(dǎo)這項(xiàng)研究,,他說(shuō):“ 而非一團(tuán)神經(jīng)纖維,,大腦中的神經(jīng)串接更像是帶狀光纜。像織布中的經(jīng),、緯線一樣,,平行的神經(jīng)纖維往右傾斜形成交叉路徑,進(jìn)而形成2維折疊的神經(jīng)層面,。這一網(wǎng)絡(luò)結(jié)構(gòu)在任何區(qū)域都是連續(xù),、一致的,不只是人類,,其它靈長(zhǎng)類動(dòng)物也是如此,。”
Thomas R Insel是國(guó)家心理健康研究所National Institute for Mental Health的主任,他說(shuō):“獲取高分辨率的大腦串接圖是人類神經(jīng)解剖學(xué)上的一個(gè)里程碑,,該新技術(shù)可解釋個(gè)體大腦的串接差異,,因而有助于診斷和治療腦部疾病。”
據(jù)Wedeen 稱:“Connectom核磁共振成像掃描儀去年安裝在麻省總醫(yī)院,相比于常規(guī)掃描儀,,這一新設(shè)備在分辨率上提高了10倍,,可觀測(cè)到縱橫交錯(cuò)的神經(jīng)纖維。”
他還說(shuō):“這一設(shè)備讓我們更敏銳地觀察到驚人的簡(jiǎn)單結(jié)構(gòu),,從而解釋大腦如何發(fā)育,。成熟大腦的串接結(jié)構(gòu)看似能反映胚胎發(fā)育過程中的2個(gè)原始途徑。在大腦發(fā)育的早期,,神經(jīng)纖維串接后形成直線路徑,表現(xiàn)出水平,、垂直與交叉的形式,。”
像高速路上的路標(biāo)一樣,這個(gè)網(wǎng)絡(luò)結(jié)構(gòu)看似能夠引導(dǎo)神經(jīng)纖維串接,,在發(fā)育期間,,它能夠限制關(guān)于神經(jīng)纖維改變方向的選擇。
研究人員稱:“如果神經(jīng)元能夠轉(zhuǎn)向4個(gè)方向:左,、右,、向上或向下,一種更為高效,、有序的方式會(huì)被啟用,,從而有利于神經(jīng)纖維找到適合的串接,以及大腦結(jié)構(gòu)不斷適應(yīng)進(jìn)化,。”
長(zhǎng)期以來(lái),,研究人員沒有能明白人類大腦的詳細(xì)圖像,部分原因是大腦皮層形成許多皺褶,,上面的角落和縫隙掩蓋了大腦的串接結(jié)構(gòu),。
盡管以往的研究借助動(dòng)物大腦中的化學(xué)示蹤劑顯示神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),但是這種侵害性技術(shù)不能用于人類,。之前的技術(shù)只能揭示25%的大腦結(jié)構(gòu),,而新掃描儀拍攝的結(jié)構(gòu)占到75%。(生物谷Bioon.com)
doi:10.1126/science.1221366
PMC:
PMID:
Segregation and Wiring in the Brain
Karl Zilles,,Katrin Amunts
A mosaic of hundreds of interconnected and microscopically identifiable areas in the human cerebral cortex controls cognition, perception, and behavior. Each area covers up to 40 cm2 of the cortical surface and consists of up to 750 million nerve cells (1). The architecture—the spatial distribution, density, size, and shape of nerve cells and their processes—varies between different cortical areas. Nerve cells are interconnected within each area and with other brain regions and the spinal cord via fiber tracts, synapses, transmitters, modulators, and receptors. This incredible structural complexity underlies the functional segregation in the cerebral cortex. The ultimate goal—to understand the driving forces and organizational principles of the human brain beyond the cellular and functional details—remains a challenge. Reports by Chen et al. (2) and Wedeen et al. (3) on pages 1634 and 1628 of this issue, respectively, accept this challenge by analyzing the genetic topography of the cortex and the spatial course of fiber pathways in the brain. The studies find unifying hierarchical and geometric rules behind the organizational details.