近日,,斯克里普斯研究所(TSRI)科學(xué)家們發(fā)現(xiàn)了一種新的分子調(diào)節(jié)途徑在大腦信息處理中發(fā)揮了重要的作用,。這項研究發(fā)表在11月9日的Cell雜志上,,研究著重于闡述一種蛋白質(zhì)HDAC4在調(diào)節(jié)神經(jīng)元之間通信中的至關(guān)重要作用,。
突觸使神經(jīng)元進(jìn)行信息交換,,是極其復(fù)雜的,。當(dāng)神經(jīng)元接收來自其他神經(jīng)元的興奮性輸入包括視覺,,聽覺和嗅覺等感官體驗等,其中許多基因會被誘導(dǎo)表達(dá),。這個過程影響神經(jīng)回路,,在學(xué)習(xí)和記憶中起著至關(guān)重要的作用。
馬希莫夫?qū)嶒炇覍α私馔挥|的形成和調(diào)節(jié)有濃厚興趣,。先前的研究已經(jīng)發(fā)現(xiàn)一些因素是這些基因在大腦中活性轉(zhuǎn)錄所必需的,,但馬希莫夫注意到許多難題仍然有待解決,。例如大多數(shù)是突觸相關(guān)基因在胚胎腦組織中是沉默的,不接收來自外部世界的直接感官輸入,。這些基因在出生后不久被抑制,,但基本機(jī)制科學(xué)家們?nèi)匀恢跎佟?/p>
研究團(tuán)隊聚焦于IIa類組蛋白去乙酰化酶(HDACs),,其中包括HDAC4,,部分原因是因為他們與非神經(jīng)組織中的轉(zhuǎn)錄調(diào)控有關(guān)。在神經(jīng)元中,,HDAC4從細(xì)胞核向細(xì)胞質(zhì)易位可能會引發(fā)突觸活動,。我們發(fā)現(xiàn)突變小鼠大腦中缺乏興奮性遞質(zhì)釋放導(dǎo)致HDAC4在神經(jīng)元細(xì)胞核積累,但核HDAC4抑制參與突觸的溝通和記憶的形成有關(guān)的什么基因池是真正要解決的,。
為了了解更多有關(guān)HDAC4在大腦中的功能,,團(tuán)隊需要研究其在小鼠模型中的作用。首先,,科學(xué)家們克服了嚴(yán)重的技術(shù)障礙,,因為HDAC4也有保護(hù)神經(jīng)元細(xì)胞凋亡(程序性細(xì)胞死亡)作用,因此該基因完全失活會導(dǎo)致神經(jīng)退行性疾病,。為了解決這個問題,,團(tuán)隊將小鼠攜帶突變形式的HDAC4,HDAC4不能從細(xì)胞核易位,,這種突變HDAC4就抑制轉(zhuǎn)錄,,而不影響神經(jīng)元的活動。結(jié)果研究發(fā)現(xiàn),,這些突變HDAC4老鼠學(xué)習(xí)和記憶與正常小鼠不同,,他們的記憶力減退與突觸傳遞受阻。(生物谷:Bioon.com)
doi:10.1016/j.cell.2012.09.037
PMC:
PMID:
HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory
Richard Sando, Natalia Gounko, Simon Pieraut, Lujian Liao, John Yates, Anton Maximov.
Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain.