紐約大學(xué)Langone醫(yī)學(xué)中心的科學(xué)家揭示了呼吸神經(jīng)元回路建立所需的兩個(gè)關(guān)鍵基因,。他們的這項(xiàng)研究作為封面文章,,發(fā)表在Nature旗下Nature Neuroscience雜志十二月刊上,。這一發(fā)現(xiàn)將有助于治療脊髓損傷和肌萎縮側(cè)索硬化癥ALS等神經(jīng)退行性疾病,。肌萎縮側(cè)索硬化癥ALS會(huì)逐漸殺死控制著呼吸,、移動(dòng)和進(jìn)食等肌肉運(yùn)動(dòng)的神經(jīng)元,。研究人員發(fā)現(xiàn)的兩個(gè)關(guān)鍵基因是一類特殊神經(jīng)細(xì)胞的分子代碼,,這類神經(jīng)細(xì)胞被統(tǒng)稱為PMC(phrenic motor column),。
“如果脊柱中PMC區(qū)域受傷,就會(huì)立刻導(dǎo)致呼吸停止,。”領(lǐng)導(dǎo)該研究的生理學(xué)和神經(jīng)科學(xué)助理教授Jeremy Dasen說,,PMC神經(jīng)細(xì)胞 “這可能是我們體內(nèi)最重要的運(yùn)動(dòng)神經(jīng)元”。不過迄今為止人們并不了解PMC神經(jīng)元與其他神經(jīng)元的區(qū)別,,對PMC神經(jīng)元的發(fā)育機(jī)制也所致甚少,。PMC細(xì)胞將恒流電化學(xué)信號(hào)從軸突傳到隔肌,控制肺部以呼吸的自然節(jié)律進(jìn)行擴(kuò)張和松弛,。“現(xiàn)在我們知道PMC細(xì)胞與其他運(yùn)動(dòng)神經(jīng)元的區(qū)別,,就可以進(jìn)行深入研究,,尋找能夠選擇性增強(qiáng)PMC細(xì)胞活性的途徑,” Dr. Dasen說,。PMC神經(jīng)元退化是ALS和脊髓損傷患者的主要死因,。
在這項(xiàng)為期三年的研究中,研究人員為了區(qū)別PMC神經(jīng)元向隔神經(jīng)注射了反向示蹤的熒光物質(zhì),,隨后觀察脊髓中發(fā)熒光的神經(jīng)元,。他們構(gòu)建了特殊的轉(zhuǎn)基因小鼠,在小鼠運(yùn)動(dòng)神經(jīng)元及其軸突中表達(dá)綠色熒光蛋白GFP,,以此觀察隔神經(jīng),。經(jīng)過一系列實(shí)驗(yàn),研究人員不僅標(biāo)注了PMC神經(jīng)元的特征性基因表達(dá)模式,,還解析了基因的功能,。研究顯示,Hoxa5和Hoxc5這兩個(gè)基因是控制PMC正確發(fā)育的主要因素,。Hox基因本就是動(dòng)物發(fā)育過程中著名的調(diào)控因子,。研究人員在小鼠胚胎的運(yùn)動(dòng)神經(jīng)元中沉默了Hoxa5和Hoxc5,發(fā)現(xiàn)PMC不能形成正常組織形式,,也不能與隔肌正確連接,,導(dǎo)致新生動(dòng)物無法呼吸。
“在胎兒發(fā)育后期刪除這些基因,,PMC神經(jīng)元的數(shù)量也會(huì)下降,,隔肌上無法形成足夠的隔神經(jīng),” Dr. Dasen說,。Dr. Dasen計(jì)劃在這一發(fā)現(xiàn)的基礎(chǔ)上對更廣泛的呼吸回路進(jìn)行研究,,包括腦干中負(fù)責(zé)生成節(jié)律的神經(jīng)元,這些神經(jīng)元會(huì)對二氧化碳水平,、壓力等其他環(huán)境因子進(jìn)行應(yīng)答,。“了解了PMC細(xì)胞之后,我們就可以順藤摸瓜去解析更廣泛的呼吸回路,,嘗試?yán)砬逅泻粑嚓P(guān)的網(wǎng)絡(luò),,”他說。研究人員指出,,了解呼吸網(wǎng)絡(luò)的作用機(jī)制,,將有助于治療呼吸相關(guān)疾病。(生物谷Bioon.com)
doi:10.1038/nn.3242
PMC:
PMID:
Sustained Hox5 gene activity is required for respiratory motor neuron development
Polyxeni Philippidou,1 Carolyn M Walsh,1 Josée Aubin,2 Lucie Jeannotte2 & Jeremy S Dasen1
Respiration in mammals relies on the rhythmic firing of neurons in the phrenic motor column (PMC), a motor neuron group that provides the sole source of diaphragm innervation. Despite their essential role in breathing, the specific determinants of PMC identity and patterns of connectivity are largely unknown. We show that two Hox genes, Hoxa5 and Hoxc5, control diverse aspects of PMC development including their clustering, intramuscular branching, and survival. In mice lacking Hox5 genes in motor neurons, axons extend to the diaphragm, but fail to arborize, leading to respiratory failure. Genetic rescue of cell death fails to restore columnar organization and branching patterns, indicating these defects are independent of neuronal loss. Unexpectedly, late Hox5 removal preserves columnar organization but depletes PMC number and branches, demonstrating a continuous requirement for Hox function in motor neurons. These findings indicate that Hox5 genes orchestrate PMC development through deployment of temporally distinct wiring programs.