當受到寄生蟲、病毒或其他病原體攻擊時,,動物通常都會用它們的免疫系統(tǒng)進行反擊,。然而對被瘧疾感染的嚙齒動物進行的一項新研究卻顯示,動物還有另一種選擇:它們能夠進化出一種與入侵者共存的機制,。研究人員在11月2日出版的美國《科學》雜志上報告了這一研究成果,。這一發(fā)現(xiàn)將幫助科學家搞清傳染病的演變與傳播途徑,從而使他們有可能培育出更加“堅強”的牲畜,。
植物對付寄生蟲有兩種手段:它們會進化出一些獨特的防御措施(例如堅韌的樹葉)來抵抗寄生蟲,,或是學會與敵人和平共處,。也就是說,通過增強光合作用來儲存更多的能量,,從而將入侵者造成的損失最小化,。英國愛丁堡大學的生態(tài)學家Lars Råberg認為,只有很少的植物能夠兩者兼顧,。于是他尋思,,動物是否也會作出類似的選擇。
Råberg和他的同事用一種能夠?qū)е炉懠驳募纳x傳染了實驗室中的5種小鼠,。研究人員隨后監(jiān)測了動物健康水平的變化,,同時測量了它們的貧血和體重損失情況,這些指標與血液中的寄生蟲數(shù)量有關(guān),。
結(jié)果顯示,,與植物一樣,小鼠也會采用抵抗和耐受兩種策略,。隨著寄生蟲在宿主體內(nèi)繁殖,,一些嚙齒動物會比另一些同類更健康,這意味著它們已經(jīng)進化出了一種耐受寄生蟲的方法,。而另一些小鼠能夠使它們體內(nèi)的寄生蟲數(shù)量保持在很低的水平,,這則說明它們在積極地與傳染病作斗爭。
然而小鼠對寄生蟲的抗性與耐受性之間并沒有關(guān)系,。例如,,小鼠對寄生蟲的抵抗能力越強,它們對后者的耐受能力就越差,,與耐受能力強的小鼠相比,,它們會損失更多的體重且更容易患貧血癥。Råberg指出,,這意味著耐受機制背后的遺傳學因素可能與產(chǎn)生抗性的遺傳學機制截然不同,。他同時強調(diào),,這一發(fā)現(xiàn)對于研究病原體的進化具有重要意義,。Råberg說,如果動物選擇耐受一種病原體而不是殺死它們,,則后者就不會因產(chǎn)生進化的動力而變得更具殺傷力,。與此同時,耐受性也并非一個理想的模式,,這是因為如果機體不殺死病原體,,它們便有可能進一步擴散。
美國北卡羅萊納州達勒姆市杜克大學的植物進化生物學家Mark Rausher表示,,這些因素將對牲畜的飼養(yǎng)方法產(chǎn)生影響,。例如,,與增強動物的抗性相比,培育那些高耐受力的雞和豬或許能夠更有效地抵御傳染病的侵襲,。(科學時報)
原始出處:
--------------------------------------------------------------------------------
Science 2 November 2007:
Vol. 318. no. 5851, pp. 812 - 814
DOI: 10.1126/science.1148526
Disentangling Genetic Variation for Resistance and Tolerance to Infectious Diseases in Animals
Lars Råberg,1,2* Derek Sim,1 Andrew F. Read1
Hosts can in principle employ two different strategies to defend themselves against parasites: resistance and tolerance. Animals typically exhibit considerable genetic variation for resistance (the ability to limit parasite burden). However, little is known about whether animals can evolve tolerance (the ability to limit the damage caused by a given parasite burden). Using rodent malaria in laboratory mice as a model system and the statistical framework developed by plant-pathogen biologists, we demonstrated genetic variation for tolerance, as measured by the extent to which anemia and weight loss increased with increasing parasite burden. Moreover, resistance and tolerance were negatively genetically correlated. These results mean that animals, like plants, can evolve two conceptually different types of defense, a finding that has important implications for the understanding of the epidemiology and evolution of infectious diseases.
1 Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
2 Department of Animal Ecology, Lund University, Ecology Building, 223 62 Lund, Sweden.
Present address: Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA.
* To whom correspondence should be addressed. E-mail: [email protected]