生物谷 訊 斯坦福大學的研究人員使用一種新技術觀察單一細胞在細胞信號復雜系統(tǒng)中的應答反應,首次發(fā)現(xiàn)相同細胞之間存在大范圍的差異,。他們的這項研究結果發(fā)布在6月27日Nature的在線版本上,。這項研究的負責人是生物工程學助理教授Markus Covert。
到目前為止,,大部分關于細胞信號的信息是通過整體分析方法觀察細胞群獲得的,。由于技術上的限制科學家不能觀察單獨的細胞。該研究使用了一種基于微流體的成像系統(tǒng),,結果表明科學家的一些認識可能已經(jīng)被基于細胞群體研究的結果所誤導,。
研究人員表示,,細胞活化這一結果是一樣的,然而細胞達到結果的過程可能是不一樣的,,群體研究不能顯示信息錯綜復雜的信號網(wǎng)絡中的差異,,而這在單一細胞水平中可以觀察到。
提示:生物谷啟用新域名 www.bioon.net
細胞信號交流調控著基本的細胞活性以及人體中相應的細胞活動,。細胞準確應答周圍環(huán)境的能力是發(fā)育,,組織修復和免疫的基礎。深入理解細胞間的相互交流將有助于了解生物系統(tǒng)的復雜性,,或能開發(fā)出癌癥,,糖尿病及其他自身免疫疾病的新療法。
為了研究單獨細胞在細胞信號傳導過程中的反應,,Covert和Stephen Quake教授的實驗室進行了聯(lián)合研究,。三年前,曾有研究人員在Quake的實驗室中開發(fā)出了一種微流體芯片技術針對性地用于單一細胞的研究,。在這項研究中,,他們就是使用微流體芯片技術觀察炎癥細胞的反應,也是該技術在生物學上的一個巧妙應用,。
在這項研究中,,研究人員用不同的蛋白濃縮物刺激細胞,這些濃縮物是免疫系統(tǒng)應答炎癥或癌癥反應的代表性物質,。結果發(fā)現(xiàn),,一些細胞接受信號并被激活,而一些細胞則沒有激活,。在圖像中,,科研人員觀察到細胞以不同的方式產(chǎn)生應答,但是細胞的基本反應在許多方面是一致的,。(生物谷www.bioon.net)
了解更多
Science Signaling:細胞信號傳導通路最優(yōu)新模型
Nature子刊:超魅力小珠調控細胞信號
T-Cell Activation Using mAb to CD3
抗RSV感染研究聚焦免疫應答
JCI:人體對HIV-2病毒的免疫應答有助艾滋病疫苗研發(fā)
生物谷推薦原文出處:
Nature doi:10.1038/nature09145
Single-cell NF-κB dynamics reveal digital activation and analogue information processing
Sava? Tay1,2,4, Jacob J. Hughey1,4, Timothy K. Lee1, Tomasz Lipniacki3, Stephen R. Quake1,2 & Markus W. Covert1
Department of Bioengineering, Stanford University, Stanford, California 94305, USA
Howard Hughes Medical Institute, Stanford, California 94305, USA
Institute of Fundamental Technological Research, Warsaw 02-106, Poland
Cells operate in dynamic environments using extraordinary communication capabilities that emerge from the interactions of genetic circuitry. The mammalian immune response is a striking example of the coordination of different cell types1. Cell-to-cell communication is primarily mediated by signalling molecules that form spatiotemporal concentration gradients, requiring cells to respond to a wide range of signal intensities2. Here we use high-throughput microfluidic cell culture3 and fluorescence microscopy, quantitative gene expression analysis and mathematical modelling to investigate how single mammalian cells respond to different concentrations of the signalling molecule tumour-necrosis factor (TNF)-α, and relay information to the gene expression programs by means of the transcription factor nuclear factor (NF)-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. We find, in contrast to population-level studies with bulk assays2, that the activation is heterogeneous and is a digital process at the single-cell level with fewer cells responding at lower doses. Cells also encode a subtle set of analogue parameters to modulate the outcome; these parameters include NF-κB peak intensity, response time and number of oscillations. We developed a stochastic mathematical model that reproduces both the digital and analogue dynamics as well as most gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α-induced NF-κB signalling in various types of cells. These results highlight the value of high-throughput quantitative measurements with single-cell resolution in understanding how biological systems operate.