科學家與美因茲約翰古騰堡大學醫(yī)學中心教授Bernd Kaina一起工作,,第一次表明人血液中的某些循環(huán)細胞--也稱為單核細胞--對活性氧(ROS)極敏感,。他們也闡明了原因:ROS是氧的攻擊性形式,,它們是在氧化應激期間所產(chǎn)生,在各種疾病中起重要作用,。
但是活性氧也是由免疫系統(tǒng)細胞在病原體的反應中自然產(chǎn)生的,,尤其是巨噬細胞。巨噬細胞與樹突細胞相似,,由單核細胞產(chǎn)生,,這發(fā)生在單核細胞離開血液進入組織之時??茖W家們指出,,巨噬細胞與樹突細胞均能抵抗ROS,就如反對ROS的前體細胞一樣,,即單核細胞,。美因茲研究小組將單核細胞的這種超敏屬性歸于明顯存在于這些細胞中的DNA修復的多種缺陷,。他們認為,這種現(xiàn)象背后存在一種調(diào)節(jié)免疫反應并防止過多的活性氧生產(chǎn)的精確機制,,這正是首次觀察到的,。他們的工作已發(fā)表在領先的科學雜志《國家科學研究院學報》( Proceedings of the National Academy of Sciences)上。
眾所周知,,電離輻射和癌癥治療藥物的一種不良影響就是免疫系統(tǒng)損傷,,即免疫系統(tǒng)停止正常運作。然而,,目前還不清楚,,免疫系統(tǒng)的哪一種細胞對輻射和化療最敏感,哪一種細胞對對輻射和化療具有抗性,。"這正是我們在當前研究項目中解決的問題",, Bernd Kaina博士說,他是一名教授,,也是美因茲大學醫(yī)學中心毒理學研究所的所長,,"我們能夠證明,,人類單核細胞對ROS超級敏感,,而巨噬細胞和樹突狀細胞則對ROS具有抗性,這兩種細胞通過細胞因子的成熟而衍生自單核細胞",??茖W家們在暴露于在動脈粥樣硬化中起作用的輻射、化學藥物甚至是氧化低密度脂蛋白(oxLDL)后觀察到單核細胞的這種極端敏感性,。上面所有的因素導致細胞內(nèi)活性氧的形成,,它們損傷DNA,導致細胞死亡,,甚至惡性轉化,。特異性免疫系統(tǒng)細胞,尤其是巨噬細胞,,在對病原體入侵機體的反應中產(chǎn)生活性氧,。理想情況下,一旦病原體被清除,,活性氧的生產(chǎn)應該停止,。也有必要限制活性氧產(chǎn)生的數(shù)量,因為這些也會在發(fā)炎組織損害健康細胞,。事實上,,慢性感染,其中活性氧是不斷產(chǎn)生的,,通常與增加的癌癥易感性有關,。
單核細胞為什么對活性氧反應如此敏感,?Kaina的研究團隊已成功地確定了單核細胞對氧化應激超級敏感的原因:單核細胞對它們的遺傳物質(zhì)不能修復緊接于ROS誘導損傷的DNA。這是因為這些細胞產(chǎn)生非常低水平的某些重要修復蛋白,,它們在醫(yī)學術語中也稱XRCC1,、ligase III、PARP-1和 DNA-PK,。并在醫(yī)學術語,。"單核細胞實際上是有缺陷的,就2個重要的DNA修復系統(tǒng)來看,,即堿基切除修復和DNA雙鏈斷裂修復",, Kaina解釋到,"迄今為止,,這種性質(zhì)的一般修復缺陷已經(jīng)觀察到,,它們既不在人體細胞內(nèi)也不在體外實驗系統(tǒng)中。"
Kaina教授推測,,單核細胞中的修復缺陷在免疫反應的調(diào)節(jié)中發(fā)揮著重要作用:為防止發(fā)炎組織中巨噬細胞過度產(chǎn)生活性氧和免疫反應過度活動,,單核細胞正如產(chǎn)生ROS的巨噬細胞的前體細胞一樣,由于它們對ROS的極度敏感而遭受增強的,、選擇性的破壞,。反過來,越少的單核細胞意味著越少的巨噬細胞及因此更低水平的ROS--總的來說是調(diào)節(jié)單核/巨噬細胞/樹突狀細胞系統(tǒng)的一個精確途徑,。這很明顯有潛在的臨床意義:特別在慢性炎癥性疾病情況下,,機體處于不平衡狀態(tài)中,過量活性氧被產(chǎn)生,,這導致健康細胞遺傳物質(zhì)的損傷,,也是癌癥發(fā)生的一個起作用的因素。這可能的,,這種惡性循環(huán)被炎癥組織中單核細胞的選擇性清除所中斷也是可能的,。(生物谷bioon.com)
doi:10.1073/pnas.1111919109
PMC:
PMID:
Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress
M. Bauer, M. Goldstein, M. Christmann, H. Becker, D. Heylmann, B. Kaina
Abstract Monocytes are key players in the immune system. Crossing the blood barrier, they infiltrate tissues and differentiate into (i) macrophages that fight off pathogens and (ii) dendritic cells (DCs) that activate the immune response. A hallmark of monocyte/macrophage activation is the generation of reactive oxygen species (ROS) as a defense against invading microorganisms. How monocytes, macrophages, and DCs in particular respond to ROS is largely unknown. Here we studied the sensitivity of primary human monocytes isolated from peripheral blood and compared them with macrophages and DCs derived from them by cytokine maturation following DNA damage induced by ROS. We show that monocytes are hypersensitive to ROS, undergoing excessive apoptosis. These cells exhibited a high yield of ROS-induced DNA single- and double-strand breaks and activation of the ATR-Chk1-ATM-Chk2-p53 pathway that led to Fas and caspase-8, -3, and -7 activation, whereas macrophages and DCs derived from them were protected. Monocytes are also hypersensitive to ionizing radiation and oxidized low-density lipoprotein. The remarkable sensitivity of monocytes to oxidative stress is caused by a lack of expression of the DNA repair proteins XRCC1, ligase IIIα, poly(ADP-ribose) polymerase-1, and catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), causing a severe DNA repair defect that impacts base excision repair and double-strand break repair by nonhomologous end-joining. During maturation of monocytes into macrophages and DCs triggered by the cytokines GM-CSF and IL-4, these proteins become up-regulated, making macrophages and DCs repair-competent and ROS-resistant. We propose that impaired DNA repair in monocytes plays a role in the regulation of the monocyte/macrophage/DC system following ROS exposure.