生物谷報(bào)道:5月7日丹麥諾維信公司和美國(guó)洛斯阿拉莫斯國(guó)家實(shí)驗(yàn)室等的科學(xué)家在Nature Biotechnology雜志在線版上發(fā)表文章說他們根據(jù)里氏木霉基因組所獲得的數(shù)據(jù)分析發(fā)現(xiàn),里氏木霉有一些基因能夠編碼產(chǎn)生一種特殊的酶,,這種酶能夠幫助把植物纖維素高效分解成單糖物質(zhì),,這種單糖可作為生產(chǎn)生物乙醇的極佳中間原料。
研究表明,,相比于其他真菌,里氏木霉在促成纖維素轉(zhuǎn)換成單糖的同時(shí),,只有很少的基因會(huì)編碼生成“吞噬”纖維素的酶,,這樣使得纖維素轉(zhuǎn)換成單糖的過程相對(duì)高效。
目前生產(chǎn)燃料乙醇選用玉米,、甘蔗等較易分解為糖類來源,;而富含纖維素的木材、秸稈等,,卻因?yàn)槿狈⒗w維素高效轉(zhuǎn)換成糖類的方法而無法作為大規(guī)模工業(yè)生產(chǎn)生物乙醇的原料,。這導(dǎo)致了“能源與人爭(zhēng)糧”的矛盾,,尤其在全球糧食供應(yīng)日益緊張的今天,更成為發(fā)展生物燃料的一個(gè)瓶頸,。
研究人員表示里氏木霉基因組中含有的信息有助于我們理解這一生物體高效轉(zhuǎn)換纖維素以及能大量分泌蛋白酶的原因,,利用這些信息將使利用纖維素大批量生產(chǎn)出生物燃料和其他化合物成為可能。”(生物谷www.bioon.com)
生物谷推薦原始出處:
Nature Biotechnology,,doi:10.1038/nbt1403,,Diego Martinez,Thomas S Brettin
Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)
Diego Martinez1,14,15, Randy M Berka2,15, Bernard Henrissat3,15, Markku Saloheimo4,15, Mikko Arvas4, Scott E Baker5, Jarod Chapman6, Olga Chertkov1, Pedro M Coutinho3, Dan Cullen7, Etienne G J Danchin3, Igor V Grigoriev6, Paul Harris2, Melissa Jackson1, Christian P Kubicek8, Cliff S Han1, Isaac Ho6, Luis F Larrondo9, Alfredo Lopez de Leon2, Jon K Magnuson5, Sandy Merino2, Monica Misra1, Beth Nelson2, Nicholas Putnam6, Barbara Robbertse10, Asaf A Salamov6, Monika Schmoll8, Astrid Terry6, Nina Thayer1, Ann Westerholm-Parvinen4, Conrad L Schoch10, Jian Yao11, Ravi Barbote1, Mary Anne Nelson12, Chris Detter1, David Bruce1, Cheryl R Kuske1, Gary Xie1, Paul Richardson6, Daniel S Rokhsar6, Susan M Lucas6, Edward M Rubin6, Nigel Dunn-Coleman13, Michael Ward11 & Thomas S Brettin6
Abstract
Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.