山東大學(xué)微生物技術(shù)國家重點實驗室,山東大學(xué)海洋生物技術(shù)研究中心,,荷蘭萊頓大學(xué)的研究人員首次從納米尺度上,,直接觀察到了單細胞紅藻——紫球藻天然狀態(tài)下藻膽體的三維形貌及其在類囊體膜上的排列格式,這對于闡明光合作用的機制、進化及其在生物醫(yī)學(xué)檢測中的應(yīng)用具有重要的意義,。這一研究結(jié)果以封面文章的形式發(fā)表在國際知名雜志《生物化學(xué)雜志》(Journal of Biological Chemistry)上,。
文章的通訊作者是來自微生物技術(shù)國家重點實驗室的張玉忠教授,其早年畢業(yè)于山東師范大學(xué)生物系,,曾先后訪問過美國威斯康星州立大學(xué)(高級訪問學(xué)者),,俄亥俄州立大學(xué)、UCLA,、夏威夷大學(xué),、華盛頓大學(xué)西雅圖分校。主要研究方向包括海洋微生物學(xué)與海洋微生物技術(shù),,深,、遠海微生物資源的多樣性、重要的生命過程與環(huán)境響應(yīng),。
多年來,,國內(nèi)外一直用透射電子顯微鏡技術(shù)研究藻膽體的結(jié)構(gòu),但透射電子顯微鏡觀察的是樣品的二維結(jié)構(gòu),。張玉忠教授課題組劉魯寧等人,,利用原子力顯微鏡技術(shù),首次從納米尺度上,,直接觀察到了單細胞紅藻——紫球藻天然狀態(tài)下藻膽體的三維形貌(64×42×28nm)(長×寬×高)及其在類囊體膜上的排列格式,。研究發(fā)現(xiàn)紫球藻藻膽體在類囊體膜上的排列格式具有多樣性,更有意義的是,,各種不同排列格式中,,藻膽體在類囊體膜上的排列都是非常擁擠的。此外,,張玉忠教授與荷蘭萊頓大學(xué)Thijs J. Aartsma教授等合作,,利用單分子光譜技術(shù),發(fā)現(xiàn)強光下紫球藻通過藻膽體內(nèi)部能量傳遞解偶聯(lián),,來實現(xiàn)過多光能的耗散,,避免過多光能對光系統(tǒng)II的傷害,根據(jù)上述研究結(jié)果,,提出了紅藻中新的過多能量耗散機制模型,。研究成果近期發(fā)表在PLOS ONE(2008,3(9):e3134)上。
藻膽體是藍藻(藍細菌)和紅藻光合作用的主要捕光色素蛋白復(fù)合物,,由藻膽蛋白和連接蛋白組成,,分布于類囊體膜的表面,負責(zé)光能的吸收,,并主要傳遞給光系統(tǒng)II,,實現(xiàn)光能向化學(xué)能的轉(zhuǎn)變。藻膽蛋白和藻膽體的結(jié)構(gòu)與功能的研究,對于闡明光合作用的機制,、進化及其在生物醫(yī)學(xué)檢測中的應(yīng)用具有重要的意義,。(生物谷Bioon.com)
生物谷推薦原始出處:
JBC,Vol. 283, Issue 50, 34946-34953,,Lu-Ning Liu,,Yu-Zhong Zhang
Watching the Native Supramolecular Architecture of Photosynthetic Membrane in Red Algae
Lu-Ning Liu, Thijs J. Aartsma, Jean-Claude Thomas, Gerda E. M. Lamers, Bai-Cheng Zhou, and Yu-Zhong Zhang1
From the State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China, the Department of Biophysics, Huygens Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the ?UMR 8186 CNRS & Ecole Normale Supérieure, Biologie Moléculaire des Organismes Photosynthétiques, Paris F-75230, France, and the ||Institute of Biology, Leiden University, Wassenaarseweg 64, Leiden 2333AL, The Netherlands
The architecture of the entire photosynthetic membrane network determines, at the supramolecular level, the physiological roles of the photosynthetic protein complexes involved. So far, a precise picture of the native configuration of red algal thylakoids is still lacking. In this work, we investigated the supramolecular architectures of phycobilisomes (PBsomes) and native thylakoid membranes from the unicellular red alga Porphyridium cruentum using atomic force microscopy (AFM) and transmission electron microscopy. The topography of single PBsomes was characterized by AFM imaging on both isolated and membrane-combined PBsomes complexes. The native organization of thylakoid membranes presented variable arrangements of PBsomes on the membrane surface. It indicates that different light illuminations during growth allow diverse distribution of PBsomes upon the isolated photosynthetic membranes from P. cruentum, random arrangement or rather ordered arrays, to be observed. Furthermore, the distributions of PBsomes on the membrane surfaces are mostly crowded. This is the first investigation using AFM to visualize the native architecture of PBsomes and their crowding distribution on the thylakoid membrane from P. cruentum. Various distribution patterns of PBsomes under different light conditions indicate the photoadaptation of thylakoid membranes, probably promoting the energy-harvesting efficiency. These results provide important clues on the supramolecular architecture of red algal PBsomes and the diverse organizations of thylakoid membranes in vivo.