近十年來,,代謝工程技術(shù)已被廣泛應(yīng)用于微生物菌種改造,,并取得了巨大成功。但是,,代謝工程技術(shù)在提高微生物在工業(yè)環(huán)境下的適應(yīng)能力和脅迫抗性方面的作用還很有限,。新型大宗生物產(chǎn)品——生物燃料、生物基化學品和生物材料的特點是量大,、價廉,。為了利用微生物高效、經(jīng)濟地生產(chǎn)這些產(chǎn)品,,急需發(fā)展新的菌株改造技術(shù),。
近日,中科院微生物研究所李寅研究員和張延平博士在《生物技術(shù)趨勢》(Trends in Biotechnology)上發(fā)表了文章,,系統(tǒng)闡述了微生物生理功能工程的新觀點(Opinion),,并建議大力發(fā)展微生物生理功能工程技術(shù),從而適應(yīng)新型生物產(chǎn)業(yè)發(fā)展對微生物菌種改造的要求,。文章已于9月29日在線發(fā)表,。
近年來,李寅小組在中國科學院,、科技部,、國家自然科學基金委員會支持下,以梭菌,、克萊伯氏菌和乳酸菌為模型,,在分子水平上研究如何提高這些菌株的生理性能?;谖⑸锷頎顟B(tài)與目標功能的關(guān)系,,李寅小組提出的微生物生理功能工程技術(shù),強調(diào)通過改善工業(yè)菌種必需的魯棒性(robustness)和適切性(fitness),,來提高菌種的工業(yè)化應(yīng)用潛力,。在設(shè)計菌種改造策略時,,除了考慮工業(yè)發(fā)酵過程的傳統(tǒng)指標如底物譜、產(chǎn)物得率,、發(fā)酵濃度,、生產(chǎn)強度等,還需要考慮菌種對pH,、溫度,、氧化還原電勢、滲透壓等環(huán)境參數(shù)波動的穩(wěn)定性,,以及菌種對木質(zhì)纖維素水解抑制物的耐受性,。在此基礎(chǔ)上,文章根據(jù)相應(yīng)生理功能的復(fù)雜性和改造的難易程度,,設(shè)計了不同的技術(shù)路線,,明確了對微生物生理功能進行系統(tǒng)改造的原則和方法。
微生物生理功能工程將微生物生理學,、系統(tǒng)生物學,、合成生物學的相關(guān)理論與工程方法結(jié)合起來,來改善宿主菌的生理功能或?qū)胄碌哪繕松砉δ?。利用這一技術(shù)改造的菌株,,將有可能滿足多元化的工業(yè)需求,特別是滿足新興生物燃料,、生物基化學品種和生物材料發(fā)展的需求,。(生物谷Bioon.com)
生物谷推薦原始出處:
Trends in Biotechnology, 29 September 2009 doi:10.1016/j.tibtech.2009.08.006
The importance of engineering physiological functionality into microbes
Yanping Zhang1, Yan Zhu1, Yang Zhu2, 3 and Yin Li1,
1 Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
2 TNO Quality of Life, Department of Biosciences, PO Box 360, 3700 AJ Zeist, the Netherlands
3 Bioprocess Engineering Group, Wageningen University and Research Centre, PO Box 8129, 6700 EV Wageningen, the Netherlands
Good physiological performance of industrial microbes is crucial for successful bioprocesses. Conventional metabolism-oriented engineering strategies often fail to obtain expected phenotypes owing to focusing narrowly on targeted metabolic capabilities while neglecting microbial physiological responses to environmental stresses. To meet the new challenges posed by the biotechnological production of fuels, chemicals and materials, microbes should exert strong physiological robustness and fitness, in addition to strong metabolic capabilities, to enable them to work efficiently in actual bioprocesses. Here, we address the importance of engineering physiological functionalities into microbes and illustrate the operation procedure. We believe that this physiology-oriented engineering strategy is a promising approach for improving the physiological performance of industrial microbes for efficient bioprocesses.