紅棗貯藏期果面微生物對(duì)碳源的利用及主成分分析
沙月霞
(寧夏植物病蟲(chóng)害防治重點(diǎn)實(shí)驗(yàn)室 寧夏農(nóng)林科學(xué)院植物保護(hù)研究所 寧夏 銀川 750002)
摘 要: Biolog方法就是微生物在利用碳源過(guò)程中產(chǎn)生的自由電子, 與四唑鹽染料發(fā)生還原顯色反應(yīng), 顏色的深淺可以反映微生物對(duì)碳源的利用程度,。采用Biolog方法, 研究紅棗貯藏期果面微生物對(duì)FF和ECO微孔板上碳源的利用情況, 進(jìn)行主成分分析(Principal component analysis, PCA),。羧酸類、吐溫類,、碳水化合物,、酯類,、氨基酸類及胺類碳源是紅棗貯藏期果面微生物群落在FF和ECO微孔板上利用的主要碳源。隨著貯藏時(shí)間的延長(zhǎng), 紅棗果面微生物對(duì)碳源的利用情況差異較大, 用保鮮劑處理過(guò)的紅棗果面微生物對(duì)碳源的利用遠(yuǎn)遠(yuǎn)低于未處理的紅棗果面微生物, 而且貯藏時(shí)間越長(zhǎng), 果面微生物對(duì)碳源的利用程度越高,。利用ECO微孔板上31種碳源作PCA, 第一主成分特征值的貢獻(xiàn)率為78.54%, 第二主成分特征值的貢獻(xiàn)率為19.06%,。
關(guān)鍵詞: 紅棗, 貯藏期, 果面微生物, 碳源利用, 主成分分析
英文摘要:
Principal component analysis of carbon source utilized by microorganism on the surface of stored jujube fruit
SHA Yue-Xia
(Key Laboratory of Ningxia Plant Disease and Insect Pests Control, Institute of Plant Protection, Ningxia Academy of
Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China)
Abstract: Biolog is defined as the emitted electrons while the microorganisms utilize carbon source combine with tetrazolium salt dyestuff, then take place color-reduction reaction which show the differ-ence of carbon source utilization. The utilizations were analyzed with principal component analysis (PCA). The main carbon source utilized by microbial on the jujube surface included carboxylic acids, amino acids, phenolic compounds, amine and tween. The utilization of carbon source showed the markedly increase with extend of the time the jujube stored. The utilization of carbon source from the microbial on the surface of the jujubes stored for 30 days was higher than that of 15 days. The utiliza-tion of carbon source of the microorganisms on the jujube surface after treating with fresh agents was low. Principal component analysis for 31 carbon source on the ECO microplate showed. Characteristic value contribution of PC 1 was 78.54% and characteristic value contribution of PC 2 was 19.06%.
Keywords: Jujube, Storage period, Fruit surface, Carbon source utilizing, Principal component analysis (PCA)