據(jù)美國物理學家組織網6月13日報道,美國普林斯頓大學和法國艾克斯—馬賽大學科研人員合作,在原核生物體內發(fā)現(xiàn)了之前只在高等生物細胞中存在的一種分子機器,細菌不僅可用它在細胞內運輸?shù)鞍踪|,還能靠它在物體表面滑行。研究人員表示,該發(fā)現(xiàn)將從根本上轉變人們對原核生物細胞內組織系統(tǒng)的理解,。相關論文發(fā)表在美國《國家科學院院刊》上。
原核生物是一種單細胞有機物,,其細胞核沒有膜層包裹,,是最原始的生命形式。研究人員發(fā)現(xiàn),,原核細菌有一種被稱為“分子運輸車”的細胞器,,能在分子內部運送蛋白質,而且這些分子運輸車能幫助細胞在固體表面滑行,。此前人們認為,,這種分子運輸車只在較高等有機物中存在。
滑行運動的能力在整個細菌界很普遍,,這種功能在發(fā)病機理和生物膜形成中都非常重要,。而且,細菌的滑行能力和游泳能力的機制不同,,細菌游泳靠的是用鞭毛作為螺旋槳在水中劃動,,而滑行的產生顯然不是依靠細胞外部的器官,因此滑行機制長期以來令人費解,。研究人員采用了多學科的方法,,顯示出細菌的滑行是由于細胞內部運輸車的單向運動和細胞外部壓力共同作用的結果。這種分子機器是一種質子通道,,由它們驅動了滑行運動,。
研究人員在論文中表示,這不僅解決了一項古老的生物學難題,,還將對原核生物學研究產生重要影響,。此前認為分子運輸車只在較高等有機物中才有,現(xiàn)在發(fā)現(xiàn)在細菌中也有,。而且每個運輸車的行動都受到細胞嚴格控制,,這表示它們無論在管理上還是彼此的配合度上都更加復雜。原核生物體內分子運輸車的更多用途還有待今后進一步研究,。(生物谷Bioon.com)
生物谷推薦原文出處:
Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1101101108
Motor-driven intracellular transport powers bacterial gliding motility
Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W.; Mignot, Tm
Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localizationand a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such asgrowth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecularmotors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation,we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transporteddown the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and convertedto traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellularmotors in bacteria and shows how these motors have been adapted to produce cell motility.