近日,,來自印度大學的研究者通過對蜂群的遺傳多樣性進行研究分析,,表示蜂群的多樣性越高將會導致寄生的致病菌越少,,并且有益菌會增多,,相關(guān)研究成果刊登在了國際雜志PLoS One上,。
這項研究開始于2010年,,研究者首次在蜜蜂的蜂窩中發(fā)現(xiàn)了四種重要的微生物:琥珀酸弧菌屬(Succinivibrio,,和母牛瘤胃相關(guān))、酒球菌屬(Oenococcus,,和酒的發(fā)酵有關(guān)),、Paralactobacillus(和食物發(fā)酵有關(guān))、雙歧桿菌(Bifidobacterium,,和酵母乳相關(guān)),。研究者Newton表示,蜜蜂蜂群可以利用這些有益的共生細菌來將不能消化的物質(zhì)轉(zhuǎn)化成有營養(yǎng)的食物并且增強抵御致病菌的感染能力,。當蜂王和許多雄蜂交配后便形成了遺傳多樣性,,這種行為被認為是增強蜜蜂群落的健康程度和生產(chǎn)力。研究者表示,,在遺傳多樣性的蜂群中很少發(fā)現(xiàn)有潛在的致病細菌的存在,,然后在遺傳性單一的蜂群中卻存在致病細菌。
研究者對來自10個遺傳單一群落的蜂群和12個遺傳多樣性的蜂群的細菌,,總共70,,500個遺傳序列進行分析,結(jié)果發(fā)現(xiàn),,在遺傳多樣性蜂群中的細菌多樣性比較高,,而遺傳單一性蜂群中的細菌多樣性卻不如遺傳多樣性的蜂群。在遺傳多樣性蜂群中的細菌多樣性高,,而且活力比較旺盛,,大多為健康的有益細菌,然而在遺傳單一性蜂群中的細菌卻是植物和動物消化道中的潛在致病菌,,相比遺傳多樣性的蜂群中比例高出了127%,。
研究者Mattila表示,這是一個非常激動人心的結(jié)果,,因為這可以讓遺傳單一的蜂群增強其多樣性,,從而增強整體蜂群的健康度和活力。但是這種遺傳多樣性的產(chǎn)生以及維持這種多樣性和附屬的健康細菌群的機制,,我們還不是很清楚,,蜜蜂可以從寄生的有益細菌中獲益,這種細菌同時也可以抵御蜜蜂群感染致病菌,寄生的有益細菌也可以從蜂群中獲得營養(yǎng)以生存,,這就構(gòu)成了一個共生的關(guān)系,。研究者Mattila和Newton又說,他們的研究提供了清晰的解釋,,不僅僅是在群落規(guī)范管理上,,而且是在蜜蜂蜂群中一妻多夫制的進化遺傳優(yōu)勢的體現(xiàn)。
研究者最后表示,,“我們對結(jié)果非常感興趣,,相信公眾也是,尤其是近幾年蜂群遭遇衰竭失調(diào)后而引起的蜂群的嚴重減少,,以及這些傳粉者在傳粉食物安全方面給公眾帶來的影響,。”(生物谷:T.Shen編譯)
doi:10.1371/journal.pone.0032962
PMC:
PMID:
Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse
Heather R. Mattila1, Daniela Rios1, Victoria E. Walker-Sperling1, Guus Roeselers2, Irene L. G. Newton3*
Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline.