據(jù)英國(guó)廣播公司報(bào)道,,英國(guó)里茲大學(xué)與日本東京農(nóng)工大學(xué)的研究團(tuán)隊(duì)目前在研究會(huì)吃鐵的微生物-磁性細(xì)菌,研究人員表示,,磁性細(xì)菌在未來(lái)或許可用來(lái)打造生物電腦,。
據(jù)了解,這些微生物攝取鐵時(shí),,本身內(nèi)部會(huì)制造出微小磁鐵,,類(lèi)似個(gè)人電腦硬碟的內(nèi)部情況??茖W(xué)家團(tuán)隊(duì)說(shuō),,這項(xiàng)研究或許會(huì)導(dǎo)致制造出速度更快硬碟。
隨著科技的進(jìn)步,,電腦零件變得越來(lái)越小,,要制造出納米級(jí)電子產(chǎn)品越來(lái)越困難。 因此,,研究人員現(xiàn)在轉(zhuǎn)而求助于大自然,,讓微生物加入制造行列。
科學(xué)家目前研究所使用的細(xì)菌為趨磁螺菌(Magnetospirillum magneticum),。這些天生含有磁性的微生物,,通常都棲息在有水的環(huán)境里,像是池塘與湖泊,,在氧氣稀少的水面底下,。
它們會(huì)跟著地球磁場(chǎng)線上下游動(dòng),在磁場(chǎng)中排列成像羅盤(pán)指針的樣子,,尋找它們偏好的氧氣濃度。 這些細(xì)菌攝取鐵時(shí),,內(nèi)部的蛋白質(zhì)會(huì)與鐵相互作用,,產(chǎn)生磁鐵礦的微小結(jié)晶體。
研究人員對(duì)這種微生物在體內(nèi)收集、形成與排列這些納米大小磁鐵進(jìn)行研究后,,研究人員利用這種方法,,將其運(yùn)用在細(xì)菌外,制成有效的"生長(zhǎng)"磁鐵,,未來(lái)可用來(lái)打造硬碟,。
里茲大學(xué)主要研究人員史坦寧表示,隨著電腦零件變得越來(lái)越小,,我們已經(jīng)接近傳統(tǒng)電子制造的極限,。傳統(tǒng)制造這些零件的機(jī)器,已經(jīng)變得不實(shí)用,,大自然可以提供我們解決這個(gè)問(wèn)題的完美工具,。(生物谷:Bioon.com)
doi:10.1002/smll.201101627
PMC:
PMID:
Biotemplated Magnetic Nanoparticle Arrays
Johanna M. Galloway, Jonathan P. Bramble, Andrea E. Rawlings, Gavin Burnell, Stephen D. Evans, Sarah S. Staniland
Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication.
doi:10.1002/smll.201102446
PMC:
PMID:
Fabrication of Lipid Tubules with Embedded Quantum Dots by Membrane Tubulation Protein
Masayoshi Tanaka1,2,*, Kevin Critchley1, Tadashi Matsunaga2, Stephen D. Evans1, Sarah S. Staniland
The first one-dimensional (1D) assembly of low-toxicity CuInS2/ZnS quantum dots (QDs) embedded in lipid nanotubules, formed from liposomes using the Amphiphysin-BAR (Bin-Amphiphysin-Rvs domain of human amphiphysin) protein to elongate the structure, is reported. The QD-containing lipid nanotubules display a high aspect ratio of ≈500:1 (≈40 nm diameter and 20 μm length) and are stable for more than 20 h. Furthermore, this methodology is extended to the assembly of various nanoparticle species within 1D lipid nanotubules, and includes materials such as CdSe and Au. Encapsulation within the hydrophobic core of the bilayer makes these materials highly biocompatible. The developed methodology and materials with these unique characteristics could be useful for various applications in nanobiotechnology and nanomedicine.