細(xì)菌感染宿主細(xì)胞:鼠傷寒沙門氏菌(橙色)在宿主細(xì)胞中(藍(lán)色)建立感染 (Credit: © Christian Goosmann, Diane Schad, Rashmi Gupta and Michael Kolbe)
瘟疫,、細(xì)菌性痢疾以及霍亂三者的共通之處是,,三種疾病均是由細(xì)菌通過復(fù)雜的毒力注射裝置來進(jìn)行感染的危險性疾病。通過像針狀一樣的結(jié)構(gòu),細(xì)菌可以將分子藥劑(小分子化合物)注射入宿主細(xì)胞,,隨后引起宿主細(xì)胞的免疫反應(yīng)。近日,,來自美國華盛頓大學(xué)和德國的研究者使用原子分辨力方法闡明了細(xì)菌的毒性針狀結(jié)構(gòu),。研究者的研究發(fā)現(xiàn)也為新型藥物的開發(fā)以及阻止病原菌感染提供了一定的線索和幫助。相關(guān)研究成果已于近日刊登在了國際著名雜志Nature上,。
細(xì)菌外膜上數(shù)百個空的針狀結(jié)構(gòu)可以幫助細(xì)菌引起致命性的瘟疫和霍亂,,針狀結(jié)構(gòu)和基底一起嵌入進(jìn)細(xì)菌細(xì)胞的外膜中,這些微小的針狀結(jié)構(gòu)構(gòu)成了致病菌的毒素注射結(jié)構(gòu),,即為細(xì)菌的三型分泌系統(tǒng)(T3SS),,細(xì)菌可以利用三型分泌系統(tǒng)將毒素蛋白注射入宿主細(xì)胞,引發(fā)宿主細(xì)胞的免疫反應(yīng)等反應(yīng),。截止到今天,,我們?nèi)允褂脗鹘y(tǒng)的抗生素來應(yīng)對致病菌的感染,但是,,有一些細(xì)菌會產(chǎn)生較強(qiáng)的耐藥性,,目前全世界的研究者都在奮力尋找新型治療耐藥性細(xì)菌感染的新型藥物,。
目前,對于細(xì)菌這種約60至80納米長,、8納米那么寬的針狀結(jié)構(gòu),,我們并不清楚。經(jīng)典的方法如X射線晶體衍射法或X射線電子顯微鏡法并不能精確指示這種針狀結(jié)構(gòu),。這種針狀結(jié)構(gòu)不能結(jié)晶也不能溶解,,科學(xué)家嘗試了很多方法卻不能解碼其原子結(jié)構(gòu)。因此,,研究者Adam Lange和Stefan Becker采用了一種全新的方法,,并且和華盛頓大學(xué)的研究者合作,在實(shí)驗室用固態(tài)核磁光針光譜學(xué)技術(shù),、電鏡術(shù)以及電腦模型技術(shù)將針狀結(jié)構(gòu)的產(chǎn)物成功地結(jié)合了起來,。隨后,研究者解譯了針狀結(jié)構(gòu)的原子結(jié)構(gòu),,首次使其分子結(jié)構(gòu)得到了可視化結(jié)果(在埃范圍內(nèi),,一種光譜線波長單位)。
研究者Adam Lange表示,,當(dāng)然,,這需要各個領(lǐng)域的技術(shù)進(jìn)步,我們在制作樣品以及固態(tài)核磁光針光譜學(xué)技術(shù)上做出了很大努力,。我們很驚訝地看到細(xì)菌的這種針狀結(jié)構(gòu)是如何構(gòu)造的,,正如我們預(yù)期所想,病原菌借助這種針狀結(jié)構(gòu)(T3SS)可以引起很多疾病,,諸如,,細(xì)菌痢疾、食物中毒或者瘟疫,,而且在這些疾病感染中,,細(xì)菌的針狀結(jié)構(gòu)都表現(xiàn)出驚人的相似性,而且這些相似性只是表現(xiàn)在針狀結(jié)構(gòu)的內(nèi)部(inner part),,然而外部卻是不一樣的,。科學(xué)家表示,,針狀結(jié)構(gòu)外部的可變性或許是細(xì)菌逃避機(jī)體免疫系統(tǒng)識別的一種策略,,通過改變外部結(jié)構(gòu),細(xì)菌的針狀結(jié)構(gòu)將會很輕松地躲過宿主的免疫系統(tǒng),,從而引起感染,。
科學(xué)家研究細(xì)菌注射毒性蛋白的結(jié)構(gòu)已經(jīng)很多年了,2010年,,通過與聯(lián)邦材料學(xué)院的研究,,他們揭示了細(xì)菌是如何裝配這些微小的注射結(jié)構(gòu)的,。這次原子級別的結(jié)果發(fā)現(xiàn)不僅能夠給科學(xué)家們在理解細(xì)菌如何躲避宿主進(jìn)行感染提供一些思路,而且我們可以通過阻擋細(xì)菌的這種針狀結(jié)構(gòu)來降低其感染的效力,。比如說像一些抗感染的藥物可以更特異性地針對細(xì)菌的感染,。Stefan Becker表示,,未來他們將繼續(xù)去研究細(xì)菌的三星分泌系統(tǒng)(針狀結(jié)構(gòu)),,他們的目的是發(fā)明出高性能的技術(shù)來更為深入的研究T3SS,這就為未來尋找特殊的抑制細(xì)菌針狀結(jié)構(gòu)的藥物提供了一些線索和幫助,。(生物谷:T.Shen編譯)
doi:10.1038/nature11079
PMC:
PMID:
Atomic model of the type III secretion system needle
Antoine Loquet, Nikolaos G. Sgourakis, Rashmi Gupta, Karin Giller, Dietmar Riedel, Christian Goosmann, Christian Griesinger, Michael Kolbe, David Baker, Stefan Becker & Adam Lange
Pathogenic bacteria using a type III secretion system (T3SS)1, 2 to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells3, 4, 5, 6. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies7, 8, 9, 10, 11, 12, resulting in low-resolution and medium-resolution models13, 14, 15, 16, 17. However, such approaches cannot deliver atomic details, especially of the crucial subunit–subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.