2012年9月9日 訊 /生物谷BIOON/ --近日,一項刊登在國際著名雜志Molecular Microbiology上的名為“Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation”的研究報告中,,來自美國賓漢頓大學的研究者表示,,致病菌綠膿桿菌微群落的形成需要丙酮酸以及丙酮酸的發(fā)酵才能完成。
綠膿桿菌,,又稱為銅綠假單胞菌,,是一種革蘭氏陰性機會致病菌,也是院內(nèi)常見的致病菌,,可感染免疫力低下,、燒傷病人等。該菌由于產(chǎn)生生物被膜,、發(fā)生基因突變,、產(chǎn)生抗生素外排泵等機理,使得該菌對抗生素具有極強的耐藥性,,對于細菌感染的臨床治療,,醫(yī)生們往往使用抗生素聯(lián)合療法,但由于細菌變異較快,,較容易產(chǎn)生耐藥,。
綠膿桿菌生物被膜結(jié)構(gòu)產(chǎn)生的標志就是必須有微菌落的存在,然而目前科學家并不清楚細菌控制微菌落形成的分子機理,,在銅綠假單胞菌中,,微菌落的形成依賴于一種雙組份調(diào)節(jié)子MifR(the two-component regulator MifR),細菌的mifR突變后,,生物被膜會由于缺少微菌落而顯得整體比較單薄,,高表達mifR可以導致微菌落的大量形成,進而產(chǎn)生結(jié)構(gòu)比較厚實,、完整的生物被膜,。
在本文研究中,研究者使用轉(zhuǎn)錄組學和蛋白質(zhì)組學技術(shù)技術(shù)闡述了微菌落的形成和壓力,、氧限制直接相關(guān),,尤其是壓力效應機制的激活、缺氧代謝過程尤其是丙酮酸發(fā)酵和微菌落的形成明顯相關(guān),。
涉及丙酮酸鹽利用的基因包括uspK,、acnA以及l(fā)dhA,這些基因的不表達和mifR的失活具有同樣的效果,就是使得細菌不產(chǎn)生微菌落,。而且在培養(yǎng)基中通過去除丙酮酸鹽也可以損傷生物被膜和微菌落的形成,。外加的丙酮酸鹽可以恢復微菌落和生物被膜的形成。
另外在乳酸脫氫酶(ldhA)突變體中通過添加丙酮酸鹽或者表達mifR并不能夠恢復細菌產(chǎn)生微菌落的能力,,盡管通過添加額外的丙酮酸鹽可以在mifR突變體中恢復微菌落形成的能力,。研究者的研究結(jié)果揭示了丙酮酸鹽以及丙酮酸鹽的發(fā)酵或許是綠膿桿菌形成微菌落,進而形成生物被膜所必須的,。(生物谷Bioon.com)
doi:10.1111/mmi.12018
PMC:
PMID:
Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation
Olga E. Petrova1, Jill R. Schurr2, Michael J. Schurr3, Karin Sauer1,*
A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that microcolony formation is associated with stressful, oxygen-limiting but electron-rich conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation while addition of pyruvate partly restored microcolony formation in mifR mutant biofilms. In contrast, expression of ldhA in mifR::Mar fully restored microcolony formation by this mutant strain. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation of the P. aeruginosa biofilm environment.