2012年8月17日 訊 /生物谷BIOON/ --近日,,來自杜克大學醫(yī)學中心的研究者通過研究,揭示了為何鐮刀狀細胞?。ㄘ氀┎∪讼啾日<t血細胞的病人在患瘧疾時候表現(xiàn)出的病情較輕,,研究者發(fā)現(xiàn)紅細胞中的遺傳物質(zhì)可以通過調(diào)節(jié)改變寄生蟲的基因表達來改變寄生蟲的活動和行為。
研究者Jen-Tsan表示,我們研究中最讓人感興趣的一點就是,,在病人鐮刀狀紅細胞(sickle red cells)中發(fā)現(xiàn)的microRNA(遺傳物質(zhì)非常小的單元組分)可以直接參與調(diào)節(jié)瘧原蟲的基因表達,。濃縮在鐮刀狀紅細胞中的microRNA可以降低寄生蟲繁殖的能力,因此使得鐮刀狀細胞病病人受到保護,,免于瘧原蟲的影響,。
MicroRNA是小的RNA單元,其來自于DNA,,而且只有緊緊20-25個核苷酸那么長,,可以幫助機體來調(diào)節(jié)基因的表達??茖W家們揭示了當兩種不同的microRNAs以高水平注射入正常的紅細胞中時,,寄生蟲的生長能力便會下降。
相關(guān)研究成果刊登在了近日的國際雜志Cell Host & Microbe上,。
研究發(fā)現(xiàn)為我們更深入地理解宿主于寄生蟲的反應以及寄生蟲的生活周期提供了幫助,,也為開發(fā)新型的抵御瘧疾的療法帶來了希望。每年大約有15-萬-300萬人死于瘧原蟲感染所引發(fā)的疾病,,其中大部分為兒童,。
研究者Greg表示,我認為我們的研究工作可以開闊我們對于瘧原蟲于宿主之間相互作用機制的理解,。瘧原蟲可以在人類的紅細胞中生長,。目前科學家們正在尋找鐮刀狀紅細胞中可以抵抗寄生蟲的有效成分。
研究小組在紅細胞中發(fā)現(xiàn)了microRNA,,并且揭示了其組分在鐮刀狀紅細胞中是劇烈變化的,。同時研究者也表示,這些變化可以直接促使瘧原蟲對鐮刀狀紅細胞產(chǎn)生抗性,。
研究者又進行了一項試驗,,他們在鐮刀狀紅細胞中破壞了microRNAs的功能,結(jié)果表明,,瘧原蟲的生長明顯增強了,。相關(guān)研究由杜克大學校長試點項目基金等基金提供支持。(生物谷Bioon.com)
編譯自:Genetic Material in Blood Cells May Affect Malaria Parasites
doi:10.1016/j.chom.2012.06.007
PMC:
PMID:
Translocation of Sickle Cell Erythrocyte MicroRNAs into Plasmodium falciparum Inhibits Parasite Translation and Contributes to Malaria Resistance
Gregory LaMonte, Nisha Philip, Joseph Reardon, Joshua R. Lacsina, William Majoros, Lesley Chapman, Courtney D. Thornburg, Marilyn J. Telen, Uwe Ohler, Christopher V. Nicchitta, Timothy Haystead, Jen-Tsan Chi
Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.