通過對小鼠進(jìn)行實(shí)驗(yàn)研究,,結(jié)果揭示了細(xì)菌被迫接受或者拒絕外源DNA分子的分子機(jī)理,。
2012年9月2日 訊 /生物谷BIOON/ --近日,,國外的微生物學(xué)家通過研究揭示了細(xì)菌被迫接受或者拒絕外源DNA分子的分子機(jī)理,,這些外源DNA分子常常會通過遺傳轉(zhuǎn)化的方式來摻入細(xì)菌的基因組中,。研究者表示,了解刺激值可以限制或者操控細(xì)菌,,從而可能為醫(yī)學(xué)帶來一些幫助,。相關(guān)研究成果刊登在了近日的國際雜志Cell Host & Microbe上。
研究者Luciano表示,,遺傳轉(zhuǎn)化是細(xì)菌使用的終極手段,,為了生存下去,細(xì)菌會在其基因組中插入其想要的基因來應(yīng)對生存困境,。研究者的研究揭示了一種稱為CRISPR的RNA干擾機(jī)制可以被用于在肺炎球菌中阻礙遺傳轉(zhuǎn)化的發(fā)生,。
研究者進(jìn)行了一系列實(shí)驗(yàn),通過向小鼠體內(nèi)注射含有CRISPR序列的肺炎球菌,,CRISPR序列可以阻止肺炎球菌獲得產(chǎn)生多聚糖的基因,,而多聚糖對于細(xì)菌建立感染非常重要。同時研究者也向另外一組小鼠體內(nèi)注射入了滅活的肺炎球菌,。
正常情況下,,小鼠會引發(fā)全身系統(tǒng)性的感染,并且最終死亡,。因?yàn)榫幋a多聚糖的基因會成功轉(zhuǎn)化至細(xì)菌中,,但是研究者表示,當(dāng)他們使用包含工程化的CRISPR序列的細(xì)菌后,,小鼠意外地存活了下來,,這也就表明了CRISPR的干預(yù)可以成功阻礙細(xì)菌獲得感染基因。
研究者表示,CRISPR或許成為一種潛在的方法來以特定的細(xì)菌細(xì)胞為靶點(diǎn)進(jìn)行攻擊,,比如對于抗生素耐藥性基因以及獨(dú)立基因,,最終將細(xì)菌殺滅。(生物谷Bioon.com)
編譯自:Researchers demonstrate how 'interfering' RNA can block bacterial evolution
doi:10.1016/j.chom.2012.06.003
PMC:
PMID:
CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection
David Bikard1, Asma Hatoum-Aslan1, Daniel Mucida2 and Luciano A. Marraffini1
Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens./P>