2012年11月21日 訊 /生物谷BIOON/ --近日,刊登在國際雜志Molecular Systems Biology上的一篇研究報告中,,來自杜克大學的研究者表示,,他們開發(fā)出了一種工程化細菌,其可以通過犧牲自己而立于別的細菌群體的生長,,這同時也揭示了程序性的細胞死亡對于細菌群體的生存變得具有特殊的優(yōu)勢,。
研究者Linchong You表示,我們使用了一種人工的生物途徑來檢測了大腸桿菌發(fā)生程序性細胞死亡的優(yōu)勢性,。這種檢測系統(tǒng)比較具有協(xié)調性,,使得利它死亡的細菌的范圍可以增加,因此研究者就可以控制控制程序性細胞死亡的范圍,就和不同條件下檢測利它死亡的范圍一樣,。
程序性的細胞死亡和細菌對壓力效應相關,,比如對氨基酸的饑餓或者競爭性分子的存在。然而細胞為何在沒有給與細胞任何優(yōu)勢的情況下,,細胞會選擇死亡的原因,,研究者并不清楚。一些研究者表示,,程序性細胞死亡使得細胞為生存的細胞提供好處,,但是目前到現(xiàn)在,在實驗中并不能檢測到這種情況的存在,。
本文研究中,,研究者使用人工生物學方法對大腸桿菌進行工程化操作,使得大腸桿菌細胞可以進行自殺行為以及促進其余細菌群體的生長繁殖,。研究者引入了一個基因回路,,其包括兩個模塊,當細菌面對抗生素6-氨基青酶烷酸時,,如果“自殺”模塊激活,,其會導致一些細菌細胞死亡破裂,如果“公共利益”模塊處于表達激活狀態(tài),,那么一種修飾的β-內酰胺酶就會產(chǎn)生,,其會保護存活的細菌細胞免于抗生素的分解和殺滅。當酶從細菌細胞中釋放出以后,,這種保護作用才會開啟,。
研究表示,有可能在某些情況下,,一些細菌細胞的死亡會對所有的細菌群體帶來益處,。研究結果對于理解處于壓力條件下細菌細胞發(fā)生程序性細胞死亡的進化動力學有很大幫助,而且為開發(fā)新型的抗菌療法具有明顯的應用價值,。(生物谷Bioon.com)
編譯自:Engineered Bacteria Can Make the Ultimate Sacrifice for the Good of the Population
doi:10.1038/msb.2012.50
PMC:
PMID:
A functional selection model explains evolutionary robustness despite plasticity in regulatory networks
Naomi Habib1,2,3,a, Ilan Wapinski4,5,a, Hanah Margalit2, Aviv Regev5,6 & Nir Friedman1,3
Evolutionary rewiring of regulatory networks is an important source of diversity among species. Previous evidence suggested substantial divergence of regulatory networks across species. However, systematically assessing the extent of this plasticity and its functional implications has been challenging due to limited experimental data and the noisy nature of computational predictions. Here, we introduce a novel approach to study cis-regulatory evolution, and use it to trace the regulatory history of 88 DNA motifs of transcription factors across 23 Ascomycota fungi. While motifs are conserved, we find a pervasive gain and loss in the regulation of their target genes. Despite this turnover, the biological processes associated with a motif are generally conserved. We explain these trends using a model with a strong selection to conserve the overall function of a transcription factor, and a much weaker selection over the specific genes it targets. The model also accounts for the turnover of bound targets measured experimentally across species in yeasts and mammals. Thus, selective pressures on regulatory networks mostly tolerate local rewiring, and may allow for subtle fine-tuning of gene regulation during evolution.