2012年12月5日 訊 /生物谷BIOON/ --近日,來(lái)自南安普頓大學(xué)的研究者研究發(fā)現(xiàn),,銅可以抑制基因的水平傳播,,基因的水平傳播可以增加細(xì)菌的抗生素耐藥性感染。相關(guān)研究成果刊登于國(guó)際雜志mBio上,。
細(xì)菌中的水平基因轉(zhuǎn)移(Horizontal gene transfer,,HGT)對(duì)于細(xì)菌抗生素耐藥性的產(chǎn)生非常關(guān)鍵,這就無(wú)疑中增加了關(guān)于感染相關(guān)的衛(wèi)生保健難度,。這項(xiàng)研究揭示了,,當(dāng)HGT在環(huán)境中頻繁發(fā)生時(shí),如在可接觸的表面如門把手、手推車以及桌子發(fā)生時(shí),,銅就可以有效抑制基因水平轉(zhuǎn)移的過(guò)程并且有效殺滅細(xì)菌,。
揭示了在手可接觸表面發(fā)生的基因間的水平傳遞對(duì)于研究和理解環(huán)境中的感染以及預(yù)防感染至關(guān)重要,研究者Keevil總結(jié)道,,我們都知道,,人類的許多致病菌在醫(yī)院環(huán)境中存貨可很長(zhǎng)時(shí)間而且經(jīng)常引發(fā)感染,引發(fā)個(gè)體死亡,。這項(xiàng)研究中我們所能闡述的是潛在的抗微生物的銅質(zhì)表面,,其不僅僅可以破壞細(xì)菌的污染鏈,而且降低細(xì)菌產(chǎn)生抗生素耐藥性的風(fēng)險(xiǎn),。通過(guò)在關(guān)鍵環(huán)境中提供足夠的清潔措施,,銅就可以用來(lái)作為一種輔助的抵御致病菌的工具來(lái)抵御感染。
銅可以大量地降低并且限制細(xì)菌的感染性行為,,其也可以有效改善個(gè)體的健康狀況及公眾的衛(wèi)生保健情況,。目前包括英國(guó)在內(nèi)的許多國(guó)家都已經(jīng)使用了銅質(zhì)的設(shè)備,使用銅質(zhì)器具可以有效降低生物負(fù)荷量以及降低致病菌的感染,。(生物谷Bioon.com)
doi:10.1128/mBio.00489-12
PMC:
PMID:
Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health
Sarah L. Warnes, Callum J. Highmore, and C. William Keevil
Horizontal gene transfer (HGT) is largely responsible for increasing the incidence of antibiotic-resistant infections worldwide. While studies have focused on HGT in vivo, this work investigates whether the ability of pathogens to persist in the environment, particularly on touch surfaces, may also play an important role. Escherichia coli, virulent clone ST131, and Klebsiella pneumoniae harboring extended-spectrum-β-lactamase (ESBL) blaCTX-M-15 and metallo-β-lactamase blaNDM-1, respectively, exhibited prolonged survival on stainless steel, with approximately 104 viable cells remaining from an inoculum of 107 CFU per cm2 after 1 month at 21°C. HGT of bla to an antibiotic-sensitive but azide-resistant recipient E. coli strain occurred on stainless steel dry touch surfaces and in suspension but not on dry copper. The conjugation frequency was approximately 10 to 50 times greater and occurred immediately, and resulting transconjugants were more stable with ESBL E. coli as the donor cell than with K. pneumoniae, but blaNDM-1 transfer increased with time. Transconjugants also exhibited the same resistance profile as the donor, suggesting multiple gene transfer. Rapid death, inhibition of respiration, and destruction of genomic and plasmid DNA of both pathogens occurred on copper alloys accompanied by a reduction in bla copy number. Naked E. coli DNA degraded on copper at 21°C and 37°C but slowly at 4°C, suggesting a direct role for the metal. Persistence of viable pathogenic bacteria on touch surfaces may not only increase the risk of infection transmission but may also contribute to the spread of antibiotic resistance by HGT. The use of copper alloys as antimicrobial touch surfaces may help reduce infection and HGT.