復(fù)旦大學(xué)上海醫(yī)學(xué)院英國(guó)籍全職長(zhǎng)江學(xué)者特聘教授、復(fù)旦大學(xué)生物醫(yī)學(xué)研究院研究員、復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院教育部分子醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室教授AlastairMurchie和研究員陳東戎帶領(lǐng)的課題組,,歷經(jīng)3年多時(shí)間,,在耐藥性病原菌中首次發(fā)現(xiàn)了一種對(duì)抗氨基糖苷類抗生素藥物的新型“核糖開關(guān)”,,該“開關(guān)”對(duì)控制此類抗生素的耐藥性有重大作用,。該成果符合開發(fā)新型靶標(biāo)藥物的要求,具有極大的臨床實(shí)用潛力,。1月18日,,《細(xì)胞》刊發(fā)了這一重大發(fā)現(xiàn),。
隨著抗生素的廣泛應(yīng)用,致病菌的耐藥性日益嚴(yán)重,,因此找到“耐藥性如何形成的新機(jī)制”已成為各國(guó)科學(xué)家面臨的共同難題,。該課題組此次發(fā)現(xiàn)耐藥菌對(duì)抗氨基糖苷類抗生素藥物的新型“核糖開關(guān)”,有望攻克此類藥物帶來的耐藥難題,。以卡那霉素,、鏈霉素、慶大霉素和新霉素等為代表的氨基糖苷類抗生素臨床上主要用于治療“敏感需氧革蘭氏陰性桿菌”所導(dǎo)致的腦膜炎,、肺炎,、骨關(guān)節(jié)等感染。該研究發(fā)現(xiàn),,由這類細(xì)菌產(chǎn)生的兩個(gè)“破壞分子”,即氨基糖苷乙酰轉(zhuǎn)移酶和氨基糖苷腺苷酰轉(zhuǎn)移酶,,兩者編碼基因的“5’非翻譯區(qū)RNA序列”區(qū)域存在“核糖開關(guān)”元件,,能夠一對(duì)一識(shí)別氨基糖苷類抗生素,并與之結(jié)合,,改變“核糖開關(guān)”的自身結(jié)構(gòu),,誘導(dǎo)相應(yīng)耐藥基因的表達(dá),產(chǎn)生耐藥性,,這說明它們是菌體產(chǎn)生耐藥性的原因之一,。
相關(guān)研究證明,“核糖開關(guān)”是自然界細(xì)菌,、高等植物等天然存在的,、有調(diào)控作用的傳感器,位于特定的基因非編碼區(qū),,通過結(jié)合小分子代謝物來調(diào)控基因的表達(dá),,可以不依賴任何蛋白質(zhì)因子直接結(jié)合代謝物并發(fā)生結(jié)構(gòu)變化,參與調(diào)控生物的基本代謝,。這一新型調(diào)控機(jī)制從一個(gè)全新的角度深入闡明了抗生素耐藥產(chǎn)生的機(jī)理,,一經(jīng)發(fā)現(xiàn),即引起各國(guó)科學(xué)家的高度關(guān)注,。
在該研究的基礎(chǔ)上,,科學(xué)家可以利用“核糖開關(guān)”的功能,根據(jù)需要應(yīng)用某種藥物或手段及時(shí)關(guān)閉這兩個(gè)“破壞分子”的破壞作用,,從根本上解決細(xì)菌耐藥問題,。AlastairMurchie教授認(rèn)為,雖然對(duì)現(xiàn)有藥物進(jìn)行輕微改造,,就可以勉強(qiáng)控制現(xiàn)有局面,,但從長(zhǎng)遠(yuǎn)來看,,研發(fā)出能以全新方式靶向殺滅細(xì)菌的新型藥物則更具吸引力,因?yàn)檫@樣就能保持藥物的原有臨床藥效,,也有望通過聯(lián)合用藥等方法徹底解決耐藥問題,。(生物谷Bioon.com)
10.1016/j.cell.2012.12.019
PMC:
PMID:
Riboswitch Control of Aminoglycoside Antibiotic Resistance
Xu Jia, Jing Zhang, Wenxia Sun, Weizhi He, Hengyi Jiang, Dongrong Chen, Alastair I.H. Murchie
The majority of riboswitches are regulatory RNAs that regulate gene expression by binding small-molecule metabolites. Here we report the discovery of an aminoglycoside-binding riboswitch that is widely distributed among antibiotic-resistant bacterial pathogens. This riboswitch is present in the leader RNA of the resistance genes that encode the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes that confer resistance to aminoglycoside antibiotics through modification of the drugs. We show that expression of the AAC and AAD resistance genes is regulated by aminoglycoside binding to a secondary structure in their 5′ leader RNA. Reporter gene expression, direct measurements of drug RNA binding, chemical probing, and UV crosslinking combined with mutational analysis demonstrate that the leader RNA functions as an aminoglycoside-sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycosides antibiotic resistance.