生物遭受外界環(huán)境刺激后,,相關(guān)基因往往會發(fā)生表達水平的適應(yīng)性變化,,以維持正常的生命活動。然而,,誘導(dǎo)表達并非只是簡單的“開-關(guān)”過程,,其動力學(xué)特征和調(diào)控機制非常復(fù)雜。其中,,脈沖式表達(surge)模式普遍存在于病原菌毒力因子表達,、動物激素的產(chǎn)生和癌癥發(fā)展過程中腫瘤壞死因子的表達等重要生理生化過程中,。針對脈沖式表達的過程及精細調(diào)控分子機制的研究還十分匱乏。
雙組分信號轉(zhuǎn)導(dǎo)系統(tǒng)是細菌細胞最重要的感應(yīng)外界環(huán)境刺激的分子機制,,曾被國內(nèi)外研究者形象地比喻為細菌的“神經(jīng)系統(tǒng)”,。細菌細胞一般編碼數(shù)個到數(shù)百個雙組分信號轉(zhuǎn)導(dǎo)系統(tǒng)蛋白,其數(shù)量多少直接反映了不同細菌“智商(IQ)”的高低 (Galperin, 2005. BMC Microbiology),。該信號系統(tǒng)由組氨酸激酶和反應(yīng)調(diào)節(jié)蛋白兩部分組成,,通過蛋白質(zhì)磷酸化修飾完成信號的跨膜傳遞。野油菜黃單胞菌(Xanthomonas campestris pv. campestris)基因組一共編碼106個雙組分信號系統(tǒng)蛋白,,是一種“IQ”非常高的植物病原細菌,。在對該細菌的雙組分信號系統(tǒng)進行比較與功能基因組分析的基礎(chǔ)上,中科院微生物所的研究人員鑒定到一個結(jié)構(gòu)獨特的組氨酸激酶SreS,。SreS除了具有組氨酸激酶的保守蛋白結(jié)構(gòu)外,,還編碼2個類似反應(yīng)調(diào)節(jié)蛋白的結(jié)構(gòu),是一種雜合性質(zhì)的組氨酸激酶,。有意思的是,在細菌受到高鹽脅迫的過程中,,SreS并不發(fā)揮激酶的功能去直接磷酸化另外一個反應(yīng)調(diào)節(jié)蛋白SreR,,而是作為SreR的競爭者(phosphate sink),利用其復(fù)雜結(jié)構(gòu)中的一個反應(yīng)調(diào)節(jié)蛋白部件(REC1)從SreR的伙伴激酶SreK處將磷酸基因競爭過來,,導(dǎo)致SreK-SreR雙組分信號轉(zhuǎn)導(dǎo)系統(tǒng)的蛋白質(zhì)磷酸化過程受阻,,造成SreR的脫磷酸化。SreS, SreK, SreR和參與葉酸代謝的蛋白HPPK由同一個操縱子編碼,,受到2個啟動子元件的協(xié)同控制,。SreR脫磷酸化后會激活其中的一個啟動子,使基因的表達水平在脅迫誘導(dǎo)基礎(chǔ)上發(fā)生一次“躍遷”,,從而表現(xiàn)出脈沖式的表達模式,。研究者同時還證明,如果這一脈沖式的表達受到干擾,,細菌抵抗脅迫的能力嚴重下降,。因此,上述調(diào)控過程是細菌細胞應(yīng)對外界環(huán)境刺激的重要分子機制之一,。由SreS,、SreK和SreR構(gòu)成的“三組分信號轉(zhuǎn)導(dǎo)系統(tǒng)”比“雙組分信號轉(zhuǎn)導(dǎo)系統(tǒng)”更加復(fù)雜,有利于細菌通過更多的途徑與方式對自身生理活動進行精細調(diào)節(jié),。
雙組分信號轉(zhuǎn)導(dǎo)系統(tǒng)的結(jié)構(gòu),、調(diào)控功能與進化是微生物所錢韋課題組的主攻研究方向之一。本研究主要由該組2010級博士研究生王芳芳完成,,曾獲得國家自然科學(xué)基金等項目的資助,,目前已在線發(fā)表于微生物學(xué)領(lǐng)域國際一流期刊Environmental Microbiology,。(生物谷Bioon.com)
生物谷推薦的英文摘要
ENVIRON MICROBIOL doi: 10.1111/1462-2920.12293
A three-component signaling system finetunes expression kinetics of HPPK responsible for folate synthesis by positive feedback loop during stress response of Xanthomonas campestris
Fang-Fang Wang, Chao-Ying Deng,Zhen Cai,Ting Wang,Li Wang, Xiao-Zheng Wang,Xiao-Ying Chen,Rong-Xiang Fang,Wei Qian
During adaptation to environments, bacteria employ two-component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatiotemporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism finetuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS, is involved in the SreK-SreR phosphotransfer process to control salt stress response in the bacterium Xanthomonas campestris. The N-terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK. This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters (P2) at the 5′ end of the sreK-sreR-sreS-hppK operon, and then modulates a transcriptional surge of the stress responsive gene hppK, which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a “three-component” signaling system finetunes expression kinetics of downstream genes.