密歇根州立大學(xué)的科學(xué)家發(fā)現(xiàn)了一種新的葉綠體必需蛋白,。這項(xiàng)發(fā)現(xiàn)使科學(xué)家可以設(shè)計(jì)在葉子,、樹(shù)干或者植物根部產(chǎn)油脂而不是只在種子中產(chǎn)油脂的新的作物。設(shè)計(jì)改造這種工程作物的實(shí)驗(yàn)已經(jīng)開(kāi)始:將一種耐寒的根部作物改造為油脂作物,。
葉綠體是植物細(xì)胞中的一種特殊組分,,通過(guò)光合作用將太陽(yáng)光、二氧化碳和水轉(zhuǎn)化為糖份和氧氣,。最新發(fā)現(xiàn)的蛋白質(zhì)命名為rigalactosyldiacylglycerol 4或TGD4,為我們提供了一個(gè)了解葉綠素工作機(jī)制的途徑,。
在這個(gè)蛋白發(fā)現(xiàn)之前,,沒(méi)有人知道葉綠素的工作機(jī)制,這個(gè)新發(fā)現(xiàn)的蛋白質(zhì)直接影響到光合作用和植物如何產(chǎn)生生物質(zhì)和油脂——該項(xiàng)目的首席科學(xué)家,、密歇根大學(xué)教授Christoph Benning說(shuō),。
這項(xiàng)研究發(fā)表在2008年8月份的《植物細(xì)胞》(The Plant Cell)雜志上,文章中揭示了TGD4蛋白在植物產(chǎn)生葉綠素過(guò)程中的關(guān)鍵作用,。沒(méi)有這種蛋白的植物在它們生長(zhǎng)到胚芽期之前就會(huì)死亡,。然而經(jīng)過(guò)遺傳改造的蛋白會(huì)使植物的油脂貯存在錯(cuò)誤的地方——不僅在種子中,還會(huì)在葉子,、莖稈和根部,。
脂質(zhì)合成是生命中的一個(gè)重要方面,也是現(xiàn)在我們面臨的最大問(wèn)題之一 ,。明確脂質(zhì)的生物化學(xué)合成途徑將對(duì)應(yīng)用植物生物學(xué)有很深遠(yuǎn)的影響,,可以用于增加植物產(chǎn)量,或者使植物生產(chǎn)新的有用物質(zhì),。——華盛頓州立大學(xué)教授John Browse說(shuō),。
科學(xué)家如果了解了TGD4蛋白的作用機(jī)制,就有可能改造一種可用于專門生產(chǎn)生物柴油的新型植物,。玉米,、大豆等大部分生產(chǎn)生物柴油的植物都是在它們的種子中累積油脂。但是科學(xué)家發(fā)現(xiàn)如果TGD4蛋白功能失調(diào),,植物就會(huì)在其葉片中積累油脂,。如果植物可以在葉片中貯存油脂,每株植物中就可能產(chǎn)生更多的油脂,。
植物油是生產(chǎn)生物柴油的最好原料之一,,熱值高、容易提取和轉(zhuǎn)化,。但是大部分的油料作物畝產(chǎn)量相對(duì)較低,,種子只能在一年中的某些固定時(shí)間收獲。Benning希望改造的新的能源植物不僅可以生產(chǎn)更多的油脂,,而且采收,、轉(zhuǎn)化更加方便,。
Benning教授的團(tuán)隊(duì)首先對(duì)蕪菁甘藍(lán)進(jìn)行生物學(xué)改造,使其變的富含油脂,。研究者在蕪菁甘藍(lán)中插入了一個(gè)調(diào)節(jié)碳水化合物轉(zhuǎn)化油脂的基因—wrinkled1,。這么做的目的是希望可以是蕪菁甘藍(lán)的塊莖中生產(chǎn)油脂而不是淀粉,從而將這種耐寒的塊莖植物改造為適于在密歇根州種植的生物能源作物,。研究者要在6個(gè)月之后才能知道這項(xiàng)改造會(huì)不會(huì)有作用,。(生物谷Bioon.com)
生物谷推薦原始出處:
The Plant Cell,In press,,Changcheng Xu, Jilian Fan, Adam J. Cornish, and Christoph Benning
Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in Arabidopsis Requires the Extraplastidic TGD4 Protein
Changcheng Xu,Jilian Fan,Adam J.Cornish,and Christoph Benning
The development of chloroplasts in Arabidopsis thaliana requires extensive lipid trafficking between the endoplasmic reticulum(ER)and the plastid.The biosynthetic enzymes for the final steps of chloroplast lipid assembly are associated with the plastid envelope membranes.For example,during biosynthesis of the galactoglycerolipids predominant in photosyn- thetic membranes,galactosyltransferases associated with these membranes transfer galactosyl residues from UDP-Gal to diacylglycerol.In Arabidopsis,diacylglycerol can be derived from the ER or the plastid.Here,we describe a mutant of Arabidopsis,trigalactosyldiacylglycerol4(tgd4),in which ER-derived diacylglycerol is not available for galactoglycerolipid biosynthesis.This mutant accumulates diagnostic oligogalactoglycerolipids,hence its name,and triacylglycerol in its tissues.The TGD4 gene encodes a protein that appears to be associated with the ER membranes.Mutant ER microsomes show a decreased transfer of lipids to isolated plastids consistent with in vivo labeling data,indicating a disruption of ER-to-plastid lipid transfer.The complex lipid phenotype of the mutant is similar to that of the tgd1,2,3 mutants disrupted in components of a lipid transporter of the inner plastid envelope membrane.However,unlike the TGD1,2,3 complex,which is proposed to transfer phosphatidic acid through the inner envelope membrane,TGD4 appears to be part of the machinery mediating lipid transfer between the ER and the outer plastid envelope membrane.The extent of direct ER-to-plastid envelope contact sites is not altered in the tgd4 mutant.However,this does not preclude a possible function of TGD4 in those contact sites as a conduit for lipid transfer between the ER and the plastid.