研究者們新近報(bào)道了一種存在于干細(xì)胞中的未知關(guān)系,即分化潛能與線粒體代謝效率之間的聯(lián)系,,后者是一種細(xì)胞的能量標(biāo)志。干細(xì)胞的線粒體活性越強(qiáng),,它所擁有的分化能力就越高,,而且形成腫瘤的可能性也更大。
這項(xiàng)發(fā)現(xiàn)能為從機(jī)體中富集適合治療用途的干細(xì)胞提供方法,,也能為干細(xì)胞在癌癥中的作用研究提供信息,。
該研究由國(guó)家心、肺,、血液研究所(NHBLI)的Toren Finkel及其同事完成,,他們以線粒體功能為指標(biāo),篩選小鼠的胚胎干細(xì)胞(檢測(cè)線粒體質(zhì)膜內(nèi)外的電壓差,,類似于神經(jīng)活性的檢測(cè)),,并且發(fā)現(xiàn)從外觀上和干細(xì)胞關(guān)鍵標(biāo)志因子的表達(dá)量上,都很難區(qū)別干細(xì)胞代謝水平的高低,。
然而,,這兩種代謝水平不同的細(xì)胞移植到小鼠體內(nèi)之后卻表現(xiàn)出相反的特征,代謝率低的細(xì)胞分化為其他細(xì)胞的效率較高,,而代謝率高的細(xì)胞則更傾向于分裂增殖,,并形成畸胎瘤,這是一種由不同類型組織混合而成的腫瘤類似物,。
干細(xì)胞會(huì)形成畸胎瘤的問(wèn)題是其臨床應(yīng)用的一大障礙,,此項(xiàng)結(jié)果至少?gòu)囊粋€(gè)方面揭示了其中的機(jī)理。實(shí)際上,,當(dāng)Finkel及其同事將線粒體抑制劑雷帕霉素注入代謝率高的細(xì)胞時(shí),,它們形成畸胎瘤的能力就會(huì)顯著降低。
盡管這項(xiàng)研究工作是在小鼠細(xì)胞中完成的,,但研究者們認(rèn)為在人的干細(xì)胞中也存在類似的關(guān)系,。因此,開(kāi)發(fā)一種能夠去除高代謝率干細(xì)胞的方法能夠提高干細(xì)胞應(yīng)用的安全性,。(生物谷Bioon.com)
生物谷推薦原始出處:
J. Biol. Chem, 10.1074/jbc.M802763200
Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells
Stefan M Schieke, Mingchao Ma, Liu Cao, J. Phillip McCoy . Jr, Chengyu Liu, Nancy F. Hensel, A. John Barrett, Manfed Boehm, and Toren Finkel
NIH-NHLBI-LMB, NIH, Bethesda, MD 20892
Relatively little is known regarding the role of mitochondrial metabolism in stem cell biology. Here we demonstrate that mouse embryonic stem cells (mES) sorted for low and high resting mitochondrial membrane potential (mL and mH) are indistinguishable morphologically and by the expression of pluripotency markers while markedly differing in metabolic rates. Interestingly, mL cells are highly efficient at in vitro mesodermal differentiation yet fail to efficiently form teratomas in vivo, while mH cells behave in the opposite fashion. We further demonstrate that m reflects the degree of overall mTOR activation and that the mTOR inhibitor rapamycin reduces metabolic rate, augments differentiation, and inhibits tumor formation of the mES cells with a high metabolic rate. Taken together, our results suggest a coupling between intrinsic metabolic parameters and stem cell fate which might form a basis for novel enrichment strategies and therapeutic options.