近日,,山東大學(xué)微生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,、山東大學(xué)海洋生物技術(shù)研究中心張玉忠教授與荷蘭萊頓大學(xué)Thijs J. Aartsma教授等合作在光合作用研究方面取得了重要進(jìn)展,,其研究成果在12月12日以封面文章的形式發(fā)表在國(guó)際知名雜志《生物化學(xué)雜志》(Journal of Biological Chemistry)上,。
多年來(lái),國(guó)內(nèi)外一直用透射電子顯微鏡技術(shù)研究藻膽體的結(jié)構(gòu),,但透射電子顯微鏡觀察的是樣品的二維結(jié)構(gòu),。張玉忠教授課題組劉魯寧等人,利用原子力顯微鏡技術(shù),,首次從納米尺度上,,直接觀察到了單細(xì)胞紅藻——紫球藻天然狀態(tài)下藻膽體的三維形貌(64×42×28nm)(長(zhǎng)×寬×高)及其在類囊體膜上的排列格式,。研究發(fā)現(xiàn)紫球藻藻膽體在類囊體膜上的排列格式具有多樣性,,更有意義的是,各種不同排列格式中,,藻膽體在類囊體膜上的排列都是非常擁擠的,。此外,張玉忠教授與荷蘭萊頓大學(xué)Thijs J. Aartsma教授等合作,,利用單分子光譜技術(shù),,發(fā)現(xiàn)強(qiáng)光下紫球藻通過(guò)藻膽體內(nèi)部能量傳遞解偶聯(lián),來(lái)實(shí)現(xiàn)過(guò)多光能的耗散,,避免過(guò)多光能對(duì)光系統(tǒng)II的傷害,,根據(jù)上述研究結(jié)果,提出了紅藻中新的過(guò)多能量耗散機(jī)制模型,。研究成果近期發(fā)表在PLOS ONE(2008,3(9):e3134)上,。
藻膽體是藍(lán)藻(藍(lán)細(xì)菌)和紅藻光合作用的主要捕光色素蛋白復(fù)合物,由藻膽蛋白和連接蛋白組成,,分布于類囊體膜的表面,,負(fù)責(zé)光能的吸收,并主要傳遞給光系統(tǒng)II,,實(shí)現(xiàn)光能向化學(xué)能的轉(zhuǎn)變,。藻膽蛋白和藻膽體的結(jié)構(gòu)與功能的研究,對(duì)于闡明光合作用的機(jī)制,、進(jìn)化及其在生物醫(yī)學(xué)檢測(cè)中的應(yīng)用具有重要的意義,。(生物谷Bioon.com)
生物谷推薦原始出處:
JBC,2008, 283(50),34946–34953,,Lu-Ning Liu,,Yu-Zhong Zhang
Watching the Native Supramolecular Architecture of Photosynthetic Membrane in Red Algae
TOPOGRAPHY OF PHYCOBILISOMES AND THEIR CROWDING, DIVERSE DISTRIBUTION PATTERNS*
Lu-Ning Liu, Thijs J. Aartsma, Jean-Claude Thomas?, Gerda E. M. Lamers||, Bai-Cheng Zhou, and Yu-Zhong Zhang1
From the State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China, the Department of Biophysics, Huygens Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the ?UMR 8186 CNRS & Ecole Normale Supérieure, Biologie Moléculaire des Organismes Photosynthétiques, Paris F-75230, France, and the ||Institute of Biology, Leiden University, Wassenaarseweg 64, Leiden 2333AL, The Netherlands
The architecture of the entire photosynthetic membrane network determines, at the supramolecular level, the physiological roles of the photosynthetic protein complexes involved. So far, a precise picture of the native configuration of red algal thylakoids is still lacking. In this work, we investigated the supramolecular architectures of phycobilisomes (PBsomes) and native thylakoid membranes from the unicellular red alga Porphyridium cruentum using atomic force microscopy (AFM) and transmission electron microscopy. The topography of single PBsomes was characterized by AFM imaging on both isolated and membrane-combined PBsomes complexes. The native organization of thylakoid membranes presented variable arrangements of PBsomes on the membrane surface. It indicates that different light illuminations during growth allow diverse distribution of PBsomes upon the isolated photosynthetic membranes from P. cruentum, random arrangement or rather ordered arrays, to be observed. Furthermore, the distributions of PBsomes on the membrane surfaces are mostly crowded. This is the first investigation using AFM to visualize the native architecture of PBsomes and their crowding distribution on the thylakoid membrane from P. cruentum. Various distribution patterns of PBsomes under different light conditions indicate the photoadaptation of thylakoid membranes, probably promoting the energy-harvesting efficiency. These results provide important clues on the supramolecular architecture of red algal PBsomes and the diverse organizations of thylakoid membranes in vivo.