美國(guó)Scripps研究所,,ProteomTech 公司,,和德國(guó)馬克斯普朗克分子生物醫(yī)學(xué)研究所等機(jī)構(gòu)的科研人員成功地利用重組蛋白誘導(dǎo)體細(xì)胞生成多能干細(xì)胞,。較之傳統(tǒng)的依賴于病毒載體的誘變方法,這一劃時(shí)代的新方法無(wú)需使用任何形式的外源性遺傳物質(zhì),從而消除了傳統(tǒng)方法中不可避免的對(duì)靶細(xì)胞自身基因組的影響,而且更加簡(jiǎn)便快捷。這項(xiàng)成果已經(jīng)在最近一期的"細(xì)胞·干細(xì)胞"期刊發(fā)表,并立即引起了包括華爾街日?qǐng)?bào),NBC和福布斯等在內(nèi)的各大媒體的廣泛關(guān)注,。
人類醫(yī)學(xué)發(fā)展到今天, 對(duì)某些疑難疾病還是不能徹底根治, 如遺傳疾病,,器官壞死,和糖尿病等,。這些疾病僅靠藥物治療只能減緩癥狀,,而器官移植又受捐贈(zèng)器官有限和免疫排斥等因素的限制而不能推廣,。干細(xì)胞是唯一有可能攻克這些疾病的治療手段。但長(zhǎng)期以來(lái),,獲取多能干細(xì)胞(pluripotent stem cell)的主要來(lái)源為人的胚胎,。這引起道德和宗教的爭(zhēng)議,進(jìn)而在美國(guó)等國(guó)家受到法律限制,。另外,,用異己的胚胎干細(xì)胞發(fā)展的治療手段將來(lái)還是會(huì)遇到免疫排斥的問(wèn)題。
2006年,,日本科學(xué)家Shinya Yamanaka領(lǐng)導(dǎo)的實(shí)驗(yàn)室第一次證明,,通過(guò)以反轉(zhuǎn)錄病毒為載體轉(zhuǎn)基因表達(dá)四個(gè)轉(zhuǎn)錄因子,可以將小鼠或人的體細(xì)胞轉(zhuǎn)變?yōu)榕c胚胎干細(xì)胞擁有相似分化和繁殖能力的細(xì)胞,,命名為誘導(dǎo)性干細(xì)胞(iPS),。這一成果具有劃時(shí)代的意義:1)干細(xì)胞的產(chǎn)生可以不再需要破壞胚胎,避免了道德,,宗教和法律上的限制,;2)不同疾病的誘導(dǎo)性干細(xì)胞可衍生出不同類型的疾病模型,為基礎(chǔ)研究和藥物篩選提供了強(qiáng)大的武器,;3)理論上,,各種疑難疾病可以通過(guò)病人自己的體細(xì)胞轉(zhuǎn)變?yōu)楦杉?xì)胞,再分化為各種類型的細(xì)胞,,組織,,甚至器官,經(jīng)過(guò)或不經(jīng)過(guò)體外加工后,,放回病人體內(nèi),,治愈疾病。
在本論文中,,研究人員成功地用四個(gè)轉(zhuǎn)錄因子的蛋白完成了由體細(xì)胞到誘導(dǎo)性干細(xì)胞的轉(zhuǎn)變過(guò)程,。自始至終,,細(xì)胞的遺傳信息沒(méi)有受到任何影響。蛋白誘導(dǎo)性干細(xì)胞的重大意義包括:1)安全性:轉(zhuǎn)化過(guò)程沒(méi)有使用病毒,,沒(méi)有使用基因,,沒(méi)有任何改變細(xì)胞遺傳信息的風(fēng)險(xiǎn);2)普及性:蛋白誘導(dǎo)方法遠(yuǎn)比基因誘導(dǎo)方法簡(jiǎn)單易行,。這樣一來(lái),,iPS技術(shù)不再被幾個(gè)資深實(shí)驗(yàn)室所壟斷。大部分實(shí)驗(yàn)室都可以重復(fù)蛋白方法而獲得iPS,。也就是說(shuō),,蛋白誘導(dǎo)方法大大降低了iPS領(lǐng)域的"門坎"。3)可行性:由于該方法的簡(jiǎn)單易行,,重復(fù)性強(qiáng),,它可以被擴(kuò)大化,產(chǎn)業(yè)化,,進(jìn)而被商業(yè)化,。蛋白誘導(dǎo)干細(xì)胞方法將大大降低利用干細(xì)胞對(duì)病人"量身定做"的治療手段的成本,使得這一商業(yè)模式成為可能,。
如果說(shuō),Shinya Yamanaka博士的成果第一次使人類看到了一個(gè)夢(mèng)想,,那么這篇論文的發(fā)表標(biāo)志著我們從夢(mèng)想向現(xiàn)實(shí)跨出了關(guān)鍵的一大步,。(生物谷Bioon.com)
生物谷推薦原始出處:
Cell Stem Cell, 23 April 2009 doi:10.1016/j.stem.2009.04.005
Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins
Hongyan Zhou1,Shili Wu4,7,Jin Young Joo5,7,Saiyong Zhu1,Dong Wook Han5,Tongxiang Lin1,Sunia Trauger2,3,Geoffery Bien4,Susan Yao4,Yong Zhu4,Gary Siuzdak2,3,Hans R. Sch?ler5,Lingxun Duan6andSheng Ding1,,
1 Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
2 Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
3 Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
4 ProteomTech, Inc., 3505 Cadillac Avenue, Suite F7, Costa Mesa, CA 92626, USA
5 Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, R?ntgenstrasse 20, Münster 48149, Germany
6 LD Biopharma Inc., Sandown Way, San Diego, CA 92130, USA
7 These authors contributed equally to this work
Groundbreaking work demonstrated that ectopic expression of four transcription factors, Oct4, Klf4, Sox2, and c-Myc, could reprogram murine somatic cells to induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006), and human iPSCs were subsequently generated using similar genetic manipulation (Takahashi etal., 2007,Yu etal., 2007). To address the safety issues arose from harboring integrated exogenous sequences in the target cell genome, a number of modified genetic methods have been developed and produced iPSCs with potentially reduced risks (for discussion, see Yamanaka, 2009, and references therein). However, all of the methods developed to date still involve the use of genetic materials and thus the potential for unexpected genetic modifications by the exogenous sequences in the target cells. Here wereport generation of protein-induced pluripotent stem cells (piPSCs) from murine embryonic fibroblasts using recombinant cell-penetrating reprogramming proteins. We demonstrated that such piPSCs can long-term self-renew and are pluripotent invitro and invivo.