利用從罕見神經(jīng)系統(tǒng)疾病患者身上產(chǎn)生的干細(xì)胞,科學(xué)家們正在解析該種疾病的發(fā)病原理,,并以此來測試若干候選藥物的療效,。發(fā)表在8月20日《自然》雜志上的該項研究致力于實現(xiàn)干細(xì)胞研究的主要目標(biāo)之一,即利用源于成體細(xì)胞重組的干細(xì)胞——誘導(dǎo)多能干細(xì)胞(iPS)來研究患者自體細(xì)胞疾病的影響,,這種細(xì)胞是用其他方式所無法獲得的,。
美國斯隆—凱特林研究所的研究人員專注于研究家族性植物神經(jīng)功能不全癥(FD),該種疾病會對控制觸覺,、血壓和流淚等功能的神經(jīng)元產(chǎn)生影響,。癥狀一般發(fā)端于生命早期,,有時甚至從一出生就會發(fā)病,,主要表現(xiàn)為肌肉缺乏張力和反射控制,從而產(chǎn)生疼痛,、血壓升高和呼吸困難等問題,。該疾病是由一種已知的基因變異引起的,但科學(xué)家們一直無法建立這種疾病的動物模型,。
研究人員從FD患者身上獲取皮膚細(xì)胞,,然后利用病毒將4個基因插入這些細(xì)胞中,從而創(chuàng)建出iPS細(xì)胞系。這些重組細(xì)胞的行為類似于胚胎干細(xì)胞,,也能轉(zhuǎn)化成所有類型的細(xì)胞,。接著,,研究人員將那些未分化的細(xì)胞誘導(dǎo)為特定的細(xì)胞類型,如神經(jīng)嵴細(xì)胞(它能產(chǎn)生受FD影響的神經(jīng)元),。
FD患者有一個基因突變,該基因?qū)σ环N稱為IKAP的蛋白進(jìn)行編碼,,基因突變導(dǎo)致基因被轉(zhuǎn)譯成蛋白時部分基因序列被跳過,。為了了解這種疾病的更多信息,,研究人員檢視了不同細(xì)胞類型中的正常和突變蛋白,。研究人員預(yù)計這些神經(jīng)細(xì)胞將會擁有更多的異常蛋白,。但事實上,,他們發(fā)現(xiàn)錯誤的轉(zhuǎn)譯在各種不同細(xì)胞中發(fā)生的幾率是同等的,。不過,,正常IKAP的水平在神經(jīng)細(xì)胞中要低得多,,這也許是疾病為何攻擊這些細(xì)胞的原因,。
該研究小組還發(fā)現(xiàn),這些細(xì)胞在分化成神經(jīng)元的能力上是具有缺陷的,,其并不像培養(yǎng)皿中的正常細(xì)胞一樣容易遷移,。研究人員利用此種差異來衡量3種藥物的療效,這幾種藥已被提議作為治療FD的候選藥物,,其中一種藥物就是激動素(kinetin),。激動素是一種天然植物激素,通常用作抗皺治療化妝品,。研究人員表示,,激動素可幾乎完全扭轉(zhuǎn)剪接缺陷,進(jìn)一步的治療還可扭轉(zhuǎn)分化缺陷,,但不能影響細(xì)胞的遷移能力,。
美國馬薩諸塞州總醫(yī)院的神經(jīng)學(xué)家蘇珊·斯勞根豪特認(rèn)為,這些細(xì)胞給長期以來令人沮喪的神經(jīng)系統(tǒng)疾病研究注入了一支“強心劑”,。該技術(shù)首次提供了對來自患者的疾病相關(guān)細(xì)胞類型進(jìn)行檢視的能力,。此一研究也首次表明激動素能改善神經(jīng)細(xì)胞疾病病情,為使用激動素進(jìn)行長期治療可能有益于FD患者的觀點提供了最好的證據(jù),。
美國斯克里普斯研究所再生醫(yī)學(xué)中心主任珍妮·羅琳認(rèn)為,,此項工作將成為未來使用干細(xì)胞來研究及治療神經(jīng)系統(tǒng)疾病的一個藍(lán)本。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature advance online publication 19 August 2009 | doi:10.1038/nature08320
Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs
Gabsang Lee1, Eirini P. Papapetrou2, Hyesoo Kim1, Stuart M. Chambers1, Mark J. Tomishima1,2,3, Christopher A. Fasano1, Yosif M. Ganat1,6, Jayanthi Menon4, Fumiko Shimizu4, Agnes Viale5, Viviane Tabar2,4, Michel Sadelain2 & Lorenz Studer1,2,4
1 Developmental Biology Program,
2 Center for Cell Engineering,
3 SKI Stem Cell Research Facility,
4 Department of Neurosurgery,
5 Genomics Core Facility, Sloan-Kettering Institute, 1275 York Ave,
6 Weill Cornell Graduate School, New York, New York 10065, USA
The isolation of human induced pluripotent stem cells (iPSCs)1, 2, 3 offers a new strategy for modelling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs4, 5, 6, 7. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy, caused by a point mutation in the IKBKAP 8 gene involved in transcriptional elongation9. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood owing to the lack of an appropriate model system. Here we report the derivation of patient-specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC-derived lineages demonstrates tissue-specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript, suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell-based assays revealing marked defects in neurogenic differentiation and migration behaviour. Furthermore, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining new insights into human disease pathogenesis and treatment.