一組由加州大學等多所大學共同組成的研究小組,在不使用病毒載體和基因插入的手段,,通過一種安全的策略使神經(jīng)干細胞經(jīng)過重新編譯轉化為多能干細胞,。這種誘導的多能干細胞(induced pluripotent stem cells,iPSCs)不但與人類胚胎干細胞極其相似,而且這些細胞還保存著供體細胞的某些功能,。
這項研究發(fā)表在9月17日PLoS ONE雜志上,。
通常,研究人員是利用病毒載體來產(chǎn)生iPSCs,,并且還要考慮4個相關因素,,但這種方法有時會引起細胞死亡或發(fā)生腫瘤。此外,,研究人員發(fā)現(xiàn),,在細胞行為,基因表達以及分化為其他細胞的功能上,,不論是老鼠還是人類的iPSCs,都與胚胎干細胞及其相似,。目前,,研究人員還未完成對iPSCs以及胚胎干細胞的全面分析。
研究人員在未使用病毒為媒介的條件下,,將人類的神經(jīng)干細胞轉化為iPSCs,,科學家發(fā)現(xiàn)了一些新的線索——新產(chǎn)生的iPSCs比人類神經(jīng)干細胞在功能上更接近于胚胎干細胞,此外,,該iPSCs細胞還攜帶著初始神經(jīng)細胞的一些轉錄“標簽”(transcriptional "signature"),。(生物谷Bioon.com)
生物谷推薦原始出處:
PLoS ONE 4(9): e7076. doi:10.1371/journal.pone.0007076
Transcriptional Signature and Memory Retention of Human-Induced Pluripotent Stem Cells
Maria C. N. Marchetto1, Gene W. Yeo2, Osamu Kainohana3, Martin Marsala3, Fred H. Gage1, Alysson R. Muotri4*
1 The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California, United States of America, 2 University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, California, United States of America, 3 University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, California, United States of America, 4 University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, California, United States of America
Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.