美國研究人員成功地利用心臟干細(xì)胞在實驗室中培育出心臟肌肉組織,,這將為人類心臟病治療帶來突破。這一研究成果發(fā)表在最近的《科學(xué)》雜志網(wǎng)絡(luò)版上,。
盡管現(xiàn)代醫(yī)學(xué)已經(jīng)相當(dāng)發(fā)達(dá),,但醫(yī)生仍然找不到簡單、快捷的方法治療因心臟病發(fā)作導(dǎo)致的心臟組織破損,。研究領(lǐng)頭人,、哈佛大學(xué)干細(xì)胞研究所的肯尼思·建介紹,美國科學(xué)家兩個月前剛剛發(fā)現(xiàn)心臟干細(xì)胞,,這為他和研究人員人工“制造”心臟肌肉組織提供可能,。
建說,,研究人員把細(xì)胞置于一層薄薄的高分子膜上,讓它們成環(huán)形排列,。這些細(xì)胞會自發(fā)重新組合,,最后形成一片心臟組織,這塊組織的形狀則由供細(xì)胞繁衍的空間決定,。
“我們有純凈的干細(xì)胞,,它們可以擴(kuò)張,可以成為功能健全的肌肉組織,,”路透社引述建的話報道,,“這為治療心臟病而制造心臟‘零件’提供良好開端。”
研究人員為心臟干細(xì)胞療法修復(fù)心臟設(shè)想了兩個途徑,。
其一是用一層心室肌肉細(xì)胞覆蓋心臟破損區(qū)域,,讓它們逐漸生長成為能正常工作的心臟組織;其二是把細(xì)胞注射進(jìn)破損區(qū)域,,然后讓它們自行生長,。
建說,他計劃一年內(nèi)在不同動物身上進(jìn)行這類試驗,,并預(yù)計這種技術(shù)可以在五年內(nèi)應(yīng)用于臨床,。
研究人員認(rèn)為,這項成果讓人類朝心臟干細(xì)胞療法邁進(jìn)一大步,,建則把這種心臟修復(fù)療法形象比喻為“給心臟貼創(chuàng)可貼”,。
建說,在這項技術(shù)真正用于臨床之前,,研究人員還有幾大難題需要解決,,如何為新肌肉組織供血便是其中之一。
干細(xì)胞是一種具有自我復(fù)制能力的多潛能細(xì)胞,,在一定條件下可以分化成多種功能細(xì)胞,。它們在實驗室里繁衍迅速并且擁有很長“壽命”,是科研人員眼里的“利器”,。
不過,,洛杉磯心臟研究所主任愛德華多·馬爾萬卻認(rèn)為,建所領(lǐng)導(dǎo)的研究“臨床意義有限”,,五年內(nèi)應(yīng)用于臨床更是“過分樂觀”,。
他說,這類試驗通常先在實驗室進(jìn)行,,然后使用人體細(xì)胞在小動物身上試驗,,接著是豬等稍大型動物。因此,,“十年內(nèi)能應(yīng)用于臨床就已經(jīng)是巨大進(jìn)步”,。(生物谷Bioon.com)
生物谷推薦原始出處:
Science 16 October 2009:DOI: 10.1126/science.1177350
Generation of Functional Ventricular Heart Muscle from Mouse Ventricular Progenitor Cells
Ibrahim J. Domian,1,2,* Murali Chiravuri,1,* Peter van der Meer,1,3,* Adam W. Feinberg,4 Xi Shi,1 Ying Shao,1 Sean M. Wu,1,2 Kevin Kit Parker,2,4,5 Kenneth R. Chien1,2,6,
The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology.
1 Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza, CPZN 3200, 185 Cambridge Street, Boston, MA 02114–2790, USA.
2 Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
3 Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands.
4 Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
5 The Wyss Institue for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
6 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.