來自全球頂級(jí)學(xué)府,、哈佛大學(xué)醫(yī)學(xué)院,、布萊根婦女醫(yī)院(Brigham and Women's Hospital)的研究人員通過新型自動(dòng)化生物打印方法實(shí)現(xiàn)了胚胎干細(xì)胞的生物打?。╞ioprinting)。這一研究成果公布在美國物理聯(lián)合會(huì)出版的《生物微流體》(Biomicrofluids)雜志上,。
領(lǐng)導(dǎo)這一研究的是哈佛醫(yī)學(xué)院醫(yī)學(xué)生物聲學(xué)微機(jī)電系統(tǒng)實(shí)驗(yàn)室的Utkan Demirci博士,,他獲得了我國2010年度第一批外國青年學(xué)者研究基金資助。
隨著科學(xué)技術(shù)的不斷發(fā)展,,三維打印機(jī)應(yīng)用領(lǐng)域的不斷擴(kuò)展,,現(xiàn)在科學(xué)家已經(jīng)開發(fā)出了能打印出皮膚、軟骨,、骨頭和身體其他器官的三維“生物打印機(jī)”,。這種打印機(jī)能通過將材料先逐行鋪開后逐層垂直鋪展的方式來打印,通過內(nèi)置的激光掃描儀快速掃描受傷部位,,分析傷口的位置,、大小、深淺等,,相關(guān)掃描信息被轉(zhuǎn)化為三維數(shù)字圖像發(fā)送給打印機(jī),,打印機(jī)能據(jù)此計(jì)算出需要噴射多少層皮膚細(xì)胞來讓傷口恢復(fù)到原初的狀態(tài),并打印出皮膚,,當(dāng)噴在傷口處,。
據(jù)EurekAlert報(bào)道,在這篇文章中,,研究人員則通延展其應(yīng)用聲波從液體中產(chǎn)生液滴的開創(chuàng)性聲學(xué)工作,,獲得了胚體形成的早期關(guān)鍵時(shí)期的重要研究成果。
在這項(xiàng)研究中,,使胚體正確形成且無機(jī)械損傷是保持干細(xì)胞具有能發(fā)育成任何所需組織之驚人能力的關(guān)鍵,。研究人員這種新的自動(dòng)化生物打印方法似乎比利用傳統(tǒng)的“掛滴”手工移液的方法在這方面做得更好。研究人員認(rèn)為掌握在高通量環(huán)境中重復(fù)可靠地操縱細(xì)胞,,無論是對(duì)單液滴中的單個(gè)或數(shù)以萬計(jì)的細(xì)胞而言,,都有可能使醫(yī)學(xué)和工程領(lǐng)域內(nèi)的許多問題獲得潛在的解決方案。
這項(xiàng)研究改善了液滴尺寸均勻度及控制液滴尺寸的能力,并且實(shí)現(xiàn)一個(gè)可以打印含有單細(xì)胞或者含有數(shù)以萬計(jì)細(xì)胞的單液滴的可擴(kuò)展系統(tǒng),,液滴形成的速度也得到了提高——新系統(tǒng)提供每秒160滴的速度,,相比而言掛滴法需10分鐘。下一步研究人員將評(píng)估這兩種方法對(duì)細(xì)胞功能的不同影響,。(生物谷Bioon.com)
生物谷推薦原文出處:
Biomicrofluids doi:10.1063/1.3580752
Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation
Feng Xu, BanuPriya Sridharan, ShuQi Wang, Umut Atakan Gurkan, Brian Syverud, and Utkan Demirci
Embryonic stem cells (ESCs) are pluripotent with multilineage potential to differentiate into virtually all cell types in the organism and thus hold a great promise for cell therapy and regenerative medicine. In vitro differentiation of ESCs starts with a phase known as embryoid body (EB) formation. EB mimics the early stages of embryogenesis and plays an essential role in ESC differentiation in vitro. EB uniformity and size are critical parameters that directly influence the phenotype expression of ESCs. Various methods have been developed to form EBs, which involve natural aggregation of cells. However, challenges persist to form EBs with controlled size, shape, and uniformity in a reproducible manner. The current hanging-drop methods are labor intensive and time consuming. In this study, we report an approach to form controllable, uniform-sized EBs by integrating bioprinting technologies with the existing hanging-drop method. The approach presented here is simple, robust, and rapid. We present significantly enhanced EB size uniformity compared to the conventional manual hanging-drop method.