美國(guó)科學(xué)家研發(fā)出了一種新技術(shù),,將納米傳感器“貼”在細(xì)胞膜表面,,可實(shí)時(shí)監(jiān)測(cè)細(xì)胞間的相互作用,,清晰度遠(yuǎn)超以往,。這項(xiàng)創(chuàng)新技術(shù)能讓科學(xué)家進(jìn)一步理解復(fù)雜的細(xì)胞生物學(xué),、監(jiān)測(cè)移植細(xì)胞的生長(zhǎng)情況以及為疾病研發(fā)出有效的治療方法,。最新研究發(fā)表在7月17日出版的《自然·納米技術(shù)》雜志上。
研究中,,科學(xué)家使用納米技術(shù)將一個(gè)傳感器“錨定”在單個(gè)細(xì)胞的細(xì)胞膜上,,這使他們能準(zhǔn)確實(shí)時(shí)地監(jiān)測(cè)到細(xì)胞在微環(huán)境下的信號(hào)傳導(dǎo)情況,以及移植細(xì)胞或組織的情況,。之前的細(xì)胞信號(hào)傳導(dǎo)傳感器只能測(cè)量一組細(xì)胞的整體活動(dòng),。進(jìn)行這項(xiàng)研究的位于美國(guó)波士頓的布萊根婦女醫(yī)院再生治療中心主任杰弗瑞·卡普表示,新技術(shù)讓他們能以前所未有的空間和時(shí)間清晰度來(lái)實(shí)時(shí)監(jiān)測(cè)單個(gè)細(xì)胞之間的相互作用,;更清楚地洞悉細(xì)胞之間的信號(hào)傳導(dǎo)細(xì)節(jié)以及細(xì)胞與藥物之間的相互作用等,,所有這些對(duì)基礎(chǔ)醫(yī)學(xué)和藥物研發(fā)都具有重要意義。
科學(xué)家表示,,這種方法可被進(jìn)一步精煉成一種工具,,用來(lái)定期研究藥物和細(xì)胞之間的相互作用,也有望用于未來(lái)的個(gè)性化醫(yī)療領(lǐng)域??ㄆ照J(rèn)為:“未來(lái),,醫(yī)學(xué)專家在為病人制定合適的治療方法之前,可以使用這項(xiàng)技術(shù)來(lái)測(cè)試某種藥物對(duì)細(xì)胞和細(xì)胞之間相互作用的影響,。”
讓科學(xué)家們尤為感到興奮的是,,新技術(shù)可以實(shí)時(shí)追蹤和監(jiān)測(cè)移植細(xì)胞的“生活”環(huán)境,以前根本無(wú)法做到這一點(diǎn),。美國(guó)馬薩諸塞州波士頓市哈佛醫(yī)學(xué)院的免疫學(xué)家烏爾里奇·艾德里安并沒(méi)有參與該試驗(yàn),,但他表示:“最新研究朝著實(shí)時(shí)、高清晰度地偵察到細(xì)胞之間的相互聯(lián)系這個(gè)目標(biāo)向前邁進(jìn)了一大步,,對(duì)新藥研發(fā)和診斷具有深遠(yuǎn)意義,。”
在人們追求差異化、個(gè)性化的今天,,個(gè)體化用藥無(wú)疑是個(gè)前景光明的大產(chǎn)業(yè),。科學(xué)家的這項(xiàng)發(fā)現(xiàn),,綜合運(yùn)用了納米科學(xué),、細(xì)胞生物學(xué)等多門學(xué)科,將用于新藥研發(fā),、監(jiān)測(cè)移植細(xì)胞等尖端領(lǐng)域,。但如此高精尖的新技術(shù)其實(shí)同樣不乏廣泛的“群眾基礎(chǔ)”。也許有朝一日,,人們服藥時(shí)不再只是靠望聞切問(wèn)和各種生化化驗(yàn)單,,而是派出一個(gè)傳感器“實(shí)地”考察各種藥物對(duì)細(xì)胞的影響。當(dāng)然,,這個(gè)美好的愿望要變?yōu)楝F(xiàn)實(shí),,前提是細(xì)胞納米傳感器的成本能下降到與其體積可相提并論。(生物谷 Bioon.com)
生物谷推薦原文出處:
Nature Nanotechnology doi:10.1038/nnano.2011.101
Cell-surface sensors for real-time probing of cellular environments
Weian Zhao,Sebastian Schafer,Jonghoon Choi,Yvonne J. Yamanaka, Maria L. Lombardi,Suman Bose,Alicia L. Carlson, Joseph A. Phillips,Weisuong Teo, Ilia A. Droujinine, Cheryl H. Cui,Rakesh K. Jain, Jan Lammerding,J. Christopher Love, Charles P. Lin, Debanjan Sarkar, Rohit Karnik8 & Jeffrey M. Karp
The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy.