英國科學(xué)家在10月12日出版的《自然》雜志上撰文指出,,他們首次精確修正了一個肝病患者干細(xì)胞內(nèi)的基因變異,經(jīng)過修正的干細(xì)胞表現(xiàn)正常,??茖W(xué)家們表示,最新研究朝個性化療法更近了一步,。
在最新研究中,,英國桑格研究所和劍橋大學(xué)的研究團隊發(fā)現(xiàn),,α1-抗胰蛋白酶內(nèi)的一個變異會導(dǎo)致一個缺陷。α1-抗胰蛋白酶是在肝臟內(nèi)非?;钴S的一個基因,,負(fù)責(zé)在制造一種能抵抗過多炎癥的蛋白。如果α1-抗胰蛋白酶發(fā)生變異,,會讓人罹患肝硬化和肺氣腫,,這是肝臟和肺最常見的遺傳紊亂。
研究人員分別用人體誘導(dǎo)多能干細(xì)胞(能轉(zhuǎn)化為多種身體組織)和直接提取的人體干細(xì)胞進行了實驗,,修正了這個對肝硬化和肺氣腫負(fù)責(zé)的基因變異,。他們相信,對有遺傳缺陷患者的干細(xì)胞進行修正后,,當(dāng)將其重新引入該病人體內(nèi)時,,它們能治療導(dǎo)致該疾病的遺傳變異。
此前,,劍橋大學(xué)的科學(xué)家們曾成功將取自遺傳性肝病患者的一小塊皮膚樣本變成人體誘導(dǎo)多能干細(xì)胞,,隨后再將干細(xì)胞變成肝細(xì)胞。在這項研究的基礎(chǔ)上,,最新研究成功地精確修正了一個含有該變異的人體誘導(dǎo)多能干細(xì)胞中的α1-抗胰蛋白酶基因,。
科學(xué)家們首先使用“分子剪刀”在正確的地方將該基因的基因組剪斷,并用名為轉(zhuǎn)座子的DNA(脫氧核糖核酸)“運輸機”將正確版本的基因插入其中,,再將該轉(zhuǎn)座子序列從細(xì)胞中剔除,,使人體誘導(dǎo)多能干細(xì)胞能轉(zhuǎn)化為肝臟細(xì)胞,而在修正點沒有出現(xiàn)任何DNA被破壞的“蛛絲馬跡”,。隨后,,科學(xué)家們通過在試管和老鼠實驗中觀察正常α1-抗胰蛋白酶蛋白的活動,證明這種經(jīng)過修正的基因在他們制造出的肝臟細(xì)胞中非?;钴S,。
他們還直接從一個具有α1-抗胰蛋白酶蛋白缺陷的病人體內(nèi)提取出其干細(xì)胞進行上述實驗,結(jié)果精確地修正了該變異,,而且,,經(jīng)過修正的干細(xì)胞產(chǎn)生了正常的α1-抗胰蛋白酶蛋白。
桑格研究所的退休研究員艾倫·布萊德利表示:“這套新系統(tǒng)能有效地修正病人細(xì)胞中的基因缺陷,。盡管這項研究還處于初期階段,,但如果將其用于臨床試驗,會讓病人大大受益,。”
劍橋大學(xué)干細(xì)胞生物和再生醫(yī)學(xué)研究中心的首席科學(xué)家盧多維奇·瓦利爾表示:“該研究表明,,對肝臟遺傳疾病進行個性化細(xì)胞治療邁出了第一步,。”
劍橋大學(xué)呼吸生物學(xué)教授戴維·洛馬斯表示:“我們的研究對于為肝病患者找到療法或延長其壽命非常關(guān)鍵,。隨后,,我們將進行人體臨床試驗。”(生物谷 Bioon.com)
doi:10.1038/nature10424
PMC:
PMID:
Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells
Kosuke Yusa, S. Tamir Rashid, Helene Strick-Marchand,Ignacio Varela,Pei-Qi Liu,David E. Paschon,Elena Miranda,Adriana Ordó?ez,Nicholas R. F. Hannan, Foad J. Rouhani,Sylvie Darche,, Graeme Alexander,Stefan J. Marciniak,Noemi Fusaki,Mamoru Hasegawa,Michael C. Holmes,James P. Di Santo,David A. Lomas, Allan Bradley1,& Ludovic Vallier
Human induced pluripotent stem cells (iPSCs) represent a unique opportunity for regenerative medicine because they offer the prospect of generating unlimited quantities of cells for autologous transplantation, with potential application in treatments for a broad range of disorders. However, the use of human iPSCs in the context of genetically inherited human disease will require the correction of disease-causing mutations in a manner that is fully compatible with clinical applications. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of human iPSCs. Here we show that a combination of zinc finger nucleases (ZFNs)7 and piggyBac technology in human iPSCs can achieve biallelic correction of a point mutation (Glu342Lys) in the α1-antitrypsin (A1AT, also known as SERPINA1) gene that is responsible for α1-antitrypsin deficiency. Genetic correction of human iPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene-targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle, to our knowledge, for the potential of combining human iPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies.