最新一期的國(guó)際著名學(xué)術(shù)期刊《CellMetabolism》雜志(《細(xì)胞-代謝》,,《Cell》雜志子刊),發(fā)表了華東理工大學(xué)楊弋教授課題組的研究成果,。這個(gè)課題組在新研究中利用合成生物學(xué)方法開發(fā)出了一系列“檢測(cè)細(xì)胞內(nèi)NADH的遺傳編碼探針”,,在國(guó)際上首次實(shí)現(xiàn)了在活細(xì)胞及各種亞細(xì)胞結(jié)構(gòu)中對(duì)NADH分子的實(shí)時(shí)動(dòng)態(tài)、特異性的檢測(cè)與成像,。
還原型煙酰胺腺嘌呤二核苷酸(NADH)及其氧化型(NAD+),,是生物體內(nèi)最重要的輔酶,廣泛參與了細(xì)胞內(nèi)的物質(zhì),、能量代謝,,信號(hào)轉(zhuǎn)導(dǎo)與基因調(diào)控,與癌癥,、心血管疾病,、糖尿病、神經(jīng)退行性疾病等許多人類重要疾病關(guān)系密切,。長(zhǎng)期以來(lái),,細(xì)胞內(nèi)的物質(zhì),、能量代謝,,信號(hào)轉(zhuǎn)導(dǎo)與基因調(diào)控雖然是人體的重要指標(biāo),但是很難檢測(cè)到細(xì)胞代謝的全過(guò)程,,楊弋教授課題組利用合成生物學(xué)方法,,開發(fā)了一系列的檢測(cè)NADH的遺傳編碼熒光探針,在國(guó)際上首次實(shí)現(xiàn)了對(duì)活細(xì)胞及各種亞細(xì)胞結(jié)構(gòu)中對(duì)NADH分子的實(shí)時(shí)動(dòng)態(tài),、特異性的檢測(cè)與成像,。鑒于NADH在代謝和信號(hào)轉(zhuǎn)導(dǎo)中的中心作用及其在疾病診療中的重要性,,新研究為研究者提供用生物成像技術(shù)觀察組織與細(xì)胞內(nèi)NADH的分布、細(xì)胞的運(yùn)行情況,、細(xì)胞的代謝情況的創(chuàng)新工具與手段,,同時(shí)可以對(duì)細(xì)胞的代謝情況進(jìn)行高時(shí)空分辨率的探測(cè)、錄像和拍照,,還可以定位或定向任何一個(gè)地方和部位進(jìn)行檢測(cè),,對(duì)推動(dòng)人們更好地了解細(xì)胞內(nèi)物質(zhì)與能量代謝的調(diào)節(jié)機(jī)制具有十分重要的意義。
在這項(xiàng)研究成果中,,研究人員開發(fā)和利用細(xì)胞自己生成的這些獨(dú)特的熒光探針,,首次精確測(cè)定人體細(xì)胞不同亞細(xì)胞結(jié)構(gòu)內(nèi)自由NADH分布水平,在實(shí)時(shí)動(dòng)態(tài)中像電影一樣看到人類和哺乳動(dòng)物細(xì)胞內(nèi)葡萄糖代謝,、線粒體呼吸鏈功能,、氧化還原調(diào)控條件下NADH代謝情況,并發(fā)現(xiàn)NADH可以自由跨膜進(jìn)入細(xì)胞內(nèi)調(diào)控多種生命活動(dòng),?;诖罅康膶?shí)驗(yàn)數(shù)據(jù),課題組提出了胞漿中的NADH是對(duì)人體生理?xiàng)l件改變非常敏感的,,而線粒體有很強(qiáng)的維持生理NADH穩(wěn)態(tài)的觀點(diǎn),。該項(xiàng)研究受國(guó)家自然科學(xué)基金、“863”計(jì)劃,、霍英東教育基金,、上海高校特聘教授(東方學(xué)者)崗位計(jì)劃和美國(guó)NIH等經(jīng)費(fèi)資助。(生物谷 Bioon.com)
doi:10.1016/j.cmet.2011.09.004
PMC:
PMID:
Genetically Encoded Fluorescent Sensors for Intracellular NADH Detection
Yuzheng Zhao, Jing Jin, Qingxun Hu, Hai-Meng Zhou, Jing Yi, Zhenhang Yu, Lei Xu, Xue Wang, Yi Yang, Joseph Loscalzo
We have developed genetically encoded fluorescent sensors for reduced nicotinamide adenine dinucleotide (NADH), which manifest a large change in fluorescence upon NADH binding. We demonstrate the utility of these sensors in mammalian cells by monitoring the dynamic changes in NADH levels in subcellular organelles as affected by NADH transport, glucose metabolism, electron transport chain function, and redox environment, and we demonstrate the temporal separation of changes in mitochondrial and cytosolic NADH levels with perturbation. These results support the view that cytosolic NADH is sensitive to environmental changes, while mitochondria have a strong tendency to maintain physiological NADH homeostasis. These sensors provide a very good alternative to existing techniques that measure endogenous fluorescence of intracellular NAD(P)H and, owing to their superior sensitivity and specificity, allow for the selective monitoring of total cellular and compartmental responses of this essential cofactor.