New research has found that the speed at which the calcium concentration in the cell changes controls the swimming behavior of sperm.
精子進入體內(nèi),,只有一個目的,,就是尋找到卵細胞,,然而與此同時,,卵細胞可以釋放誘導(dǎo)劑來吸引精子靠近,,鈣離子濃度可以決定精子尾巴的移動方式,,近日,,來自哥廷根大學(xué)等處的研究人員發(fā)現(xiàn),,當鈣離子濃度發(fā)生改變以后,,精子可以立即作出反應(yīng),而精子對鈣離子的濃度本身并沒有反應(yīng),,有可能是精子可以進行精準的計算,,計算出鈣離子濃度的變化,以便在高濃度鈣離子的時候進行活動,。這項研究成果刊登在了國際著名雜志Journal of Cell Biology上,。
精子游動的路徑是根據(jù)卵子釋放引誘劑的方式來進行的,尤其是海生動物精子的游動途徑是依據(jù)化學(xué)物質(zhì)濃度梯度來進行的,,游動的模式受到精子尾部的鈣離子濃度的控制,,在高濃度鈣離子的條件下,精子可以以一種非對稱的,,像鞭子一樣扭動的方式來移動,,這種運動途徑是扭曲的;而在低鈣離子濃度條件下,,精子的尾巴將會進行有規(guī)律的拍打,,并且游動的路徑呈直線,這種鈣離子濃度高低更替的方式可以使得精子以螺旋形的方式前進,,然后通過在實驗室研究自由游動的精子發(fā)現(xiàn),,精子這種傳統(tǒng)的游動模式并不是固定不變的。
研究者Luis Alvarez用精巧的頻閃鐳射照明技術(shù)(ingenious stroboscopic laser illumination)可以精確地追蹤精子的運動軌跡,,而且還可以同時測定精子周圍環(huán)境中鈣離子濃度的變化情況,,研究結(jié)果表明,精子尾巴僅僅對鈣離子濃度的時間導(dǎo)數(shù)有反應(yīng),,而對于鈣離子濃度并無明顯關(guān)系,,結(jié)果進一步表明,精子可以自己進行計算,,目前這種機制尚不清楚,,研究人員懷疑,精子有可能通過自身的兩個蛋白結(jié)合到鈣離子上從而形成一種化學(xué)衍生物,。
然而精子為什么會進行如此復(fù)雜的計算,?就好比我們在高中時候碰見的復(fù)雜計算一樣。精子身上誘導(dǎo)物和鈣離子濃度非常高,,和卵子的基本接近,,然后精子可以利用精妙的“數(shù)學(xué)計算”在高濃度鈣離子存在的情況下做出及時反應(yīng)。
除了鈣離子外,機體中其它的信使物質(zhì)也可以控制細胞的功能發(fā)揮,,當然完全有可能,,細胞也可以通過進行復(fù)雜的化學(xué)濃度計算來介導(dǎo)其它信使物質(zhì)之間的信號通路,研究者將會對這個問題進一步進行研究,。(生物谷:T.Shen編譯)
doi:10.1083/jcb.201106096
PMC:
PMID:
The rate of change in Ca2+ concentration controls sperm chemotaxis
Luis Alvarez1, Luru Dai2, Benjamin M. Friedrich3, Nachiket D. Kashikar1, Ingo Gregor4, René Pascal1, and U. Benjamin Kaupp1
During chemotaxis and phototaxis, sperm, algae, marine zooplankton, and other microswimmers move on helical paths or drifting circles by rhythmically bending cell protrusions called motile cilia or flagella. Sperm of marine invertebrates navigate in a chemoattractant gradient by adjusting the flagellar waveform and, thereby, the swimming path. The waveform is periodically modulated by Ca2+ oscillations. How Ca2+ signals elicit steering responses and shape the path is unknown. We unveil the signal transfer between the changes in intracellular Ca2+ concentration ([Ca2+]i) and path curvature (κ). We show that κ is modulated by the time derivative d[Ca2+]i/dt rather than the absolute [Ca2+]i. Furthermore, simulation of swimming paths using various Ca2+ waveforms reproduces the wealth of swimming paths observed for sperm of marine invertebrates. We propose a cellular mechanism for a chemical differentiator that computes a time derivative. The cytoskeleton of cilia, the axoneme, is highly conserved. Thus, motile ciliated cells in general might use a similar cellular computation to translate changes of [Ca2+]i into motion.