蛋白質(zhì)是細(xì)菌的分子結(jié)構(gòu)單元和功能組件,和生物代謝過(guò)程息息相關(guān),為了完成正常的生理過(guò)程,,蛋白質(zhì)需要被折疊成三維的復(fù)雜立體結(jié)構(gòu)形式,,近日,來(lái)自德國(guó)馬克思普朗科生物化學(xué)研究所(MPIB)的研究人員分析了在蛋白質(zhì)折疊過(guò)程中的一個(gè)關(guān)鍵因子,,即分子伴侶DnaK,,研究者Ulrich Hartl表示,理解蛋白質(zhì)折疊過(guò)程中的分子機(jī)制,,尤其是折疊錯(cuò)誤,,對(duì)于了解很多疾病發(fā)病的分子機(jī)制很有必要。比如阿爾茲海默癥病人和帕金森患者,,研究人員的這項(xiàng)最新的研究成果刊登在了雜志Cell Reports上,。
我們都知道,蛋白質(zhì)可以介導(dǎo)很多機(jī)體的生理學(xué)過(guò)程,,人類(lèi)機(jī)體可以以氨基酸的形勢(shì)合成眾多的不同種類(lèi),、不同功能的蛋白質(zhì),為了有效地行使功能,,蛋白質(zhì)必須折疊成三維結(jié)構(gòu)來(lái)發(fā)揮作用,,如果折疊過(guò)程發(fā)生錯(cuò)誤,那么將會(huì)生成無(wú)用蛋白質(zhì)或者危險(xiǎn)的蛋白質(zhì)團(tuán),,所有細(xì)胞,,不管是細(xì)菌還是人類(lèi)細(xì)胞都存在一類(lèi)蛋白質(zhì)網(wǎng)絡(luò),那就是分子伴侶,,可以幫助蛋白質(zhì)進(jìn)行合適折疊,,而不至于發(fā)生折疊錯(cuò)誤。
MPIB的科學(xué)家如今研究了大腸桿菌的這種蛋白質(zhì)組織網(wǎng)絡(luò),,運(yùn)用蛋白質(zhì)組學(xué)分析的方法解析了不同蛋白質(zhì)分子伴侶在蛋白質(zhì)折疊過(guò)程是如何協(xié)同作用的,,研究者表示,他們識(shí)別出了蛋白質(zhì)網(wǎng)絡(luò)中的一個(gè)中央關(guān)鍵調(diào)節(jié)單薄Hsp70蛋白DnaK,,它行使如同轉(zhuǎn)盤(pán)一樣的作用,,DnaK可以結(jié)合到大約700個(gè)不同的蛋白質(zhì)合成鏈當(dāng)中發(fā)揮作用,在這些鏈中發(fā)揮蛋白質(zhì)折疊的作用,,如果DnaK不能進(jìn)行折疊的話(huà),,將會(huì)由另一個(gè)分子伴侶-桶裝蛋白GroEL來(lái)完成,GroEL是一個(gè)高度特異性的蛋白折疊機(jī)器,,可以進(jìn)行單一的蛋白質(zhì)鏈的折疊,,而且保護(hù)被折疊的蛋白質(zhì)鏈不受外界影響,。
分子伴侶網(wǎng)絡(luò)的破壞
研究人員同時(shí)也研究了當(dāng)分子伴侶網(wǎng)絡(luò)被破壞以后對(duì)蛋白質(zhì)折疊帶來(lái)的影響,,例如,,當(dāng)?shù)鞍踪|(zhì)GroEL被破壞掉之后,,不能被折疊的蛋白質(zhì)將會(huì)堆積到DnaK那里,,DnaK將會(huì)把過(guò)多的蛋白質(zhì)轉(zhuǎn)移到蛋白質(zhì)酶處,,進(jìn)行蛋白質(zhì)分解,,這樣一來(lái),蛋白質(zhì)鏈將不能夠成熟從而行使應(yīng)有的功能,,最終影響機(jī)體的正常生物學(xué)功能,。類(lèi)似地,眾多復(fù)雜的蛋白質(zhì)分子伴侶可以控制人類(lèi)細(xì)胞的蛋白質(zhì)組,,理解這其中的分子反應(yīng)機(jī)制,,對(duì)于更好的了解一些因?yàn)檎郫B錯(cuò)誤所導(dǎo)致的神經(jīng)變性疾病可以提供一定的治療線(xiàn)索和基礎(chǔ)。(生物谷:T.Shen編譯)
doi:10.1016/j.celrep.2011.12.007
PMC:
PMID:
DnaK Functions as a Central Hub in the E. coli Chaperone Network
Giulia Calloni1, 4, Taotao Chen1, 4, Sonya M. Schermann1, 5, Hung-chun Chang1, 6, Pierre Genevaux2, Federico Agostini3, Gian Gaetano Tartaglia3, Manajit Hayer-Hartl1, , , F. Ulrich Hartl1, ,
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ∼700 mostly cytosolic proteins, including ∼180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.