來自美國加州大學(xué)洛杉磯分校的研究人員證實(shí)在果蠅(Drosophila)中,,胰島素和營養(yǎng)物阻止血干細(xì)胞分化為成熟的血細(xì)胞,。這一發(fā)現(xiàn)對于科學(xué)家研究人飲食變化導(dǎo)致的炎癥反應(yīng)和血液發(fā)育產(chǎn)生影響。相關(guān)研究結(jié)果于2012年3月11日發(fā)表在《自然-細(xì)胞生物學(xué)》期刊上,。
對成年果蠅而言,除了當(dāng)需要?jiǎng)?chuàng)建血液供應(yīng)時(shí)之外,阻止血干細(xì)胞或者祖細(xì)胞分化為血細(xì)胞是非常重要的,。
論文通訊作者、加州大學(xué)洛杉磯分校伊萊和伊迪特-布羅德再生醫(yī)學(xué)和干細(xì)胞研究中心(Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA)研究員和加州大學(xué)洛杉磯分校生命科學(xué)學(xué)院分子,、細(xì)胞和發(fā)育生物學(xué)部門主席和教授Utpal Banerjee說,,這項(xiàng)研究發(fā)現(xiàn)血干細(xì)胞接收胰島素和營養(yǎng)因子傳達(dá)的系統(tǒng)信號(hào)---在此項(xiàng)研究中這種信號(hào)指的是必需氨基酸---,,從而有助于它們維持“干性(stemness,即保持干細(xì)胞狀態(tài))”,。
“我們期待這項(xiàng)研究將促進(jìn)科學(xué)家進(jìn)一步探究哺乳動(dòng)物血干細(xì)胞可能直接利用的信號(hào)檢測機(jī)制”,,Banerjee說,“鑒于患有II型糖尿病和其他代謝疾病的病人表現(xiàn)出慢性炎癥和髓樣細(xì)胞(myeloid cell )積累的癥狀,,這些研究將可能加深人們對這些癥狀的了解,。”
對果蠅而言,它的腦部類似于人體內(nèi)制造胰島素的胰腺,,而且能夠產(chǎn)生胰島素信號(hào),。Banerjee實(shí)驗(yàn)室博士后研究員和論文第一作者Ji Won Shim說,當(dāng)果蠅血液存在必需氨基酸時(shí),,血干細(xì)胞攝取胰島素,。
Shim研究的果蠅處于幼蟲發(fā)育階段。為了觀察在這一階段血干細(xì)胞發(fā)生什么,,Shim將幼蟲(通常吃發(fā)酵粉和玉米粉)放入沒有食物的罐子里,,并且一放就是24小時(shí)。隨后,,她利用一種特異性的化學(xué)標(biāo)記使得果蠅血干細(xì)胞在共聚焦顯微鏡下可見,,從而來檢驗(yàn)這些干細(xì)胞是否存在。
“一旦果蠅挨餓而且收不到胰島素和營養(yǎng)分子傳達(dá)的信號(hào),,那么所有的干細(xì)胞因全部發(fā)生分化而消失掉”,,Shim說,“留下的都是已分化的成熟血細(xì)胞,。這種類型的機(jī)制還沒在哺乳動(dòng)物或人類中鑒定到,,因此觀察是否也有類似機(jī)制發(fā)揮作用將是比較吸引人的。”
Shim說,,在果蠅中,,存在的唯一成熟血細(xì)胞就是髓樣細(xì)胞。糖尿病患者有很多激活的髓樣細(xì)胞,,而且這些細(xì)胞可能導(dǎo)致疾病癥狀產(chǎn)生,。髓樣細(xì)胞異常激活和代謝異常可能在糖尿病中發(fā)揮著關(guān)鍵性的作用,。
“代謝調(diào)控和免疫應(yīng)答高度整合在一起,,彼此相互依賴才能正確地發(fā)揮作用。兩種代謝疾病即II型糖尿病和肥胖癥與慢性炎癥緊密地關(guān)聯(lián)在一起,,而慢性炎癥是由血細(xì)胞的異常激活所引發(fā)的”,,Shim說,“然而,沒有人對血干細(xì)胞和代謝變化之間的聯(lián)系作過系統(tǒng)性研究,。我們的研究著重指出髓系血干細(xì)胞和代謝破壞存在潛在性的聯(lián)系,。”
接下來,Banerjee 和他的研究小組將尋找其他的潛在性地控制果蠅血干細(xì)胞的系統(tǒng)信號(hào)分子,。
“眾所周知,,哺乳動(dòng)物代謝紊亂導(dǎo)致血液系統(tǒng)產(chǎn)生異常的炎癥反應(yīng)。然而,,代謝應(yīng)激(metabolic stress)如何影響血細(xì)胞發(fā)育仍然是個(gè)謎”,,論文中寫道,“這里,,我們發(fā)現(xiàn)讓果蠅幼蟲挨餓導(dǎo)致血細(xì)胞表型產(chǎn)生,。最為顯著的效果就是在因?yàn)榘ゐI而受影響的時(shí)間里和細(xì)胞中血干細(xì)胞加速分化為成熟血細(xì)胞。” (生物谷:towersimper編譯)
延伸閱讀:
Dev. Cell:揭示巨核細(xì)胞增大秘密
PNAS:最新研究表明科學(xué)家應(yīng)重新繪制血細(xì)胞產(chǎn)生圖譜
Nature:鑒定出產(chǎn)生培育造血干細(xì)胞微環(huán)境的細(xì)胞
Mol. Cell:SENP1蛋白在T細(xì)胞和B細(xì)胞發(fā)育中發(fā)揮關(guān)鍵性作用
Cell:血祖細(xì)胞接受微環(huán)境細(xì)胞和子血細(xì)胞信號(hào)維持平衡
Science:細(xì)胞內(nèi)隨機(jī)性競爭決定B細(xì)胞命運(yùn)
Science:揭示B細(xì)胞不均等分裂產(chǎn)生抗體機(jī)制
Nat. Genet:發(fā)現(xiàn)造血干細(xì)胞分化關(guān)鍵性基因Dnmt3a
Nat. Genet:Dnmt3a抑制造血干細(xì)胞自我更新基因表達(dá)
Cell Stem Cell:揭示造血干細(xì)胞來源的秘密
Gene Dev.:麻省理工白頭研究所首次發(fā)現(xiàn)長鏈非編碼RNA阻止紅細(xì)胞死亡
doi:10.1038/ncb2453
PMC:
PMID:
Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila
Jiwon Shim, Tina Mukherjee & Utpal Banerjee
The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell—plasmatocytes, crystal cells and lamellocytes—the functions of which are reminiscent of mammalian myeloid cells. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.