對人血細胞進行重編程而產(chǎn)生的誘導性多功能干細胞(induced pluripotent stem cells, iPSCs)培養(yǎng)72天后形成初始視網(wǎng)膜結(jié)構(gòu):這種結(jié)構(gòu)含有一些特化細胞,,如它的外層和內(nèi)層分別存在著光受體細胞(紅色)和神經(jīng)節(jié)細胞(綠色),而位于中層的每個細胞核用藍色表示,。這些細胞層類似于人類眼球正常發(fā)育時形成的多層結(jié)構(gòu),。
來自美國威斯康星大學麥迪遜分校的研究人員第一次利用對人血細胞進行重編程而產(chǎn)生的誘導性多功能干細胞(induced pluripotent stem cells, iPSCs)制造出初始視網(wǎng)膜結(jié)構(gòu),,而且這種結(jié)構(gòu)含有正在進行增殖的神經(jīng)視網(wǎng)膜祖細胞(neuroretinal progenitor cell),。相關(guān)研究結(jié)果于2012年3月12日在線發(fā)表在Investigative Ophthalmology & Visual Science期刊上。
另一項研究已經(jīng)表明這種視網(wǎng)膜結(jié)構(gòu)能夠形成細胞層---就像人類視網(wǎng)膜正常發(fā)育形成多層結(jié)構(gòu)那樣---,,而且這些細胞擁有一種能夠讓它們交流信息的機制:沿著視網(wǎng)膜后壁分布的光敏感性光受體細胞產(chǎn)生電脈沖,,接著這些脈沖通過視神經(jīng)(optic nerve)進行傳播,最終傳送到大腦中,,從而讓人們看見東西,。
綜合在一起,這些發(fā)現(xiàn)提示著科學家能夠利用人視網(wǎng)膜細胞組裝成更加復雜的視網(wǎng)膜組織,,而且這一切都開始于常規(guī)的病人血液樣品,。
科學家能夠想象實驗室構(gòu)建的人視網(wǎng)膜組織將有著很多應用,包括利用它們測試藥物和研究視網(wǎng)膜退變性疾病,,如色素性視網(wǎng)膜炎(retinitis pigmentosa)---兒童和青年人眼睛變瞎的一種常見病因,。有朝一日,科學家也可能能夠替換視網(wǎng)膜多層結(jié)構(gòu)以便來治療視網(wǎng)膜損傷更加廣泛的病人,。
“我們不知道這種技術(shù)將帶領(lǐng)我們走多遠,,但是我們能夠利用病人血細胞培養(yǎng)出初期視網(wǎng)膜結(jié)構(gòu)的事實是令人鼓舞的,不僅是因為它證實了我們早期利用人皮膚細胞的研究,,而且還是因為血液作為起始來源也較方便獲得”,,這篇論文通訊作者和小兒眼科醫(yī)師David Gamm博士說,“這是向前邁出的堅實一步,。”
2011年,,位于魏茲曼中心(Waisman Center)的Gamm實驗室利用胚胎干細胞和人皮膚細胞獲得的iPSC細胞構(gòu)建出處于視網(wǎng)膜發(fā)育最為初始階段的視網(wǎng)膜結(jié)構(gòu)。盡管這些結(jié)構(gòu)產(chǎn)生主要類型的視網(wǎng)膜細胞,,但是它們?nèi)狈υ诟映墒斓囊暰W(wǎng)膜中發(fā)現(xiàn)的結(jié)構(gòu)組裝,。
這次,Gamm和第一作者Joseph Phillips博士領(lǐng)導的研究小組使用標準的血液提取技術(shù)收集人血液,,然后將收集到的血細胞重編程為誘導性多功能干細胞(iPSC),,并利用他們的方法將iPSC細胞培養(yǎng)為視網(wǎng)膜狀結(jié)構(gòu)。
在他們的研究當中,,大約16%的初始視網(wǎng)膜結(jié)構(gòu)長出不同的層,。最外層主要含有光受體細胞,而中層和內(nèi)層相應地容納著中間視網(wǎng)膜神經(jīng)元(intermediary retinal neuron)和神經(jīng)節(jié)細胞(ganglion cell),。細胞的這種獨特排列令人回想起在眼球后發(fā)現(xiàn)的情形,。
再者,Phillips博士的研究證實這些視網(wǎng)膜細胞能夠產(chǎn)生突觸(synapse),而這是它們能夠彼此之間進行交流的前提條件,。
在這項研究中,,研究人員與位于威斯康星州麥迪遜市的國際細胞動力學(Cellular Dynamics International, CDI) 公司開展合作而獲得iPSC細胞。CDI公司開創(chuàng)一種將血細胞轉(zhuǎn)化為iPSC細胞的技術(shù),。CDI公司研究人員從來自供者血液樣品中提取出一種稱作T淋巴細胞的血細胞,,然后將它們重編程為iPSC細胞。CDI公司是由威斯康星大學麥迪遜分校干細胞先驅(qū)James Thomson博士創(chuàng)建的,。
“我們對CDI公司也對我們的研究產(chǎn)生興趣而感到榮幸,。將我們的實驗室和CDI公司各自的專業(yè)技能結(jié)合在一起是這項研究取得成功的關(guān)鍵。” (生物谷:towersimper編譯)
doi:10.1167/iovs.11-9313
PMC:
PMID:
Blood-derived Human iPS Cells Generate Optic Vesicle-like Structures with the Capacity to Form Retinal Laminae and Develop Synapses
M. Joseph Phillips, Kyle A Wallace, Sarah J. Dickerson, Michael J Miller, Amelia Verhoeven, Jessica M. Martin, Lynda Wright, Wei Shen, Elizabeth E Capowski, E. Ferda Percin, Enio T. Perez, Xiufeng Zhong, Maria V. Canto-Soler and David M. Gamm
Purpose: We sought to determine if human induced pluripotent stem cells (iPSCs) derived from blood could produce optic vesicle-like structures (OVs) with the capacity to stratify and express markers of intercellular communication. Methods: Activated T-lymphocytes from a routine peripheral blood sample were reprogrammed by retroviral transduction to iPSCs. The T-lymphocyte-derived iPSCs (TiPSCs) were characterized for pluripotency and differentiated to OVs using our previously published protocol. TiPSC-OVs were then manually isolated, pooled, and cultured en masse to more mature stages of retinogenesis. Throughout this stepwise differentiation process, changes in anterior neural, retinal, and synaptic marker expression were monitored by PCR, immunocytochemistry, and/or flow cytometry. Results: TiPSCs generated abundant OVs, which contained a near homogenous population of proliferating neuroretinal progenitor cells (NRPCs). These NRPCs differentiated into multiple neuroretinal cell types, similar to OV cultures from human embryonic stem cells and fibroblast-derived iPSCs. In addition, portions of some TiPSC-OVs maintained their distinctive neuroepithelial appearance and spontaneously formed primitive laminae, reminiscent of the developing retina. Retinal progeny from TiPSC-OV cultures expressed numerous genes and proteins critical for synaptogenesis and gap junction formation, concomitant with the emergence of glia and the upregulation of thrombospondins in culture. Conclusions: We demonstrate for the first time that human blood-derived iPSCs can generate retinal cell types, providing a highly convenient donor cell source for iPSC-based retinal studies. We also show that cultured TiPSC-OVs have the capacity to self-assemble into rudimentary neuroretinal structures and express markers indicative of chemical and electrical synapses.