受損的皮膚和肝臟往往可以自我修復(fù),心臟卻不具備這種強(qiáng)大的自愈功能,。
不過(guò),,英國(guó)《自然》(Nature)雜志8月5日發(fā)表的最新研究報(bào)告指出,從人類(lèi)胚胎干細(xì)胞分化而成的心肌細(xì)胞被移植入豚鼠受損的心臟后,,成功地實(shí)現(xiàn)了與受體心肌的同步跳動(dòng),,降低了心率不齊(心律失常)的發(fā)生率,這項(xiàng)成果為采用細(xì)胞療法治療心臟病帶來(lái)了希望,。
利用動(dòng)物模型來(lái)評(píng)估心臟病細(xì)胞療法的效果一直是個(gè)難題,,因?yàn)槿祟?lèi)細(xì)胞跟不上實(shí)驗(yàn)鼠的心跳節(jié)奏。大鼠和小鼠的心率分別為每分鐘大約400次和600次,,而由人體胚胎干細(xì)胞培養(yǎng)而來(lái)的心肌細(xì)胞每分鐘跳動(dòng)的頻率一般不超過(guò)150次,,即使通過(guò)外部電刺激,也只能提高到每分鐘240次,。
不過(guò),,豚鼠的心跳約為每分鐘200次到250次,,接近人類(lèi)心肌細(xì)胞的極限。華盛頓大學(xué)心血管生物學(xué)家查克·默里和邁克爾·拉弗雷姆帶領(lǐng)研究小組利用左心室受傷的豚鼠進(jìn)行了此次實(shí)驗(yàn),,傷口留下的疤痕使豚鼠的左心室變窄,,導(dǎo)致泵血功能減弱,更易出現(xiàn)心律不齊,。
研究人員設(shè)法抑制住豚鼠的免疫系統(tǒng)對(duì)人類(lèi)細(xì)胞的排異反應(yīng),,并發(fā)明了一種直接評(píng)估心臟電活動(dòng)的方法:利用最新的基因工程技術(shù)將一個(gè)“傳感器”基因插入人類(lèi)胚胎干細(xì)胞中,當(dāng)這些干細(xì)胞分化而成的心肌細(xì)胞收縮時(shí),,便會(huì)發(fā)出熒光,。
實(shí)驗(yàn)結(jié)果顯示,接受了人類(lèi)心肌細(xì)胞移植后,,豚鼠受傷的左心室出現(xiàn)了部分再肌化的跡象,,泵血功能增強(qiáng)。更讓人驚奇的是,,移植非但沒(méi)有引起研究人員普遍擔(dān)憂(yōu)的心律不齊,,反而使豚鼠心臟心率不齊的發(fā)生率降低了。“我們的研究證實(shí),,這些細(xì)胞與正常工作的心肌細(xì)胞功能一樣,,可與其余的心臟組織同步跳動(dòng)。”默里說(shuō),。
心律不齊是心臟病病發(fā)后致人死亡的一個(gè)主要因素,。拉弗雷姆指出,他們的研究結(jié)果提供了強(qiáng)有力的證據(jù),,表明這些人類(lèi)心肌細(xì)胞供體符合真正的心臟再生的生理學(xué)標(biāo)準(zhǔn),,如果能夠在大型動(dòng)物模型身上獲得同樣的效果,將具有重大的臨床意義,。
沒(méi)有參與該項(xiàng)研究的紐約大學(xué)朗格尼醫(yī)學(xué)院心臟病專(zhuān)家格倫·菲什曼卻認(rèn)為:“人類(lèi)細(xì)胞可以與豚鼠組織相銜接的結(jié)論是真實(shí)的,,但說(shuō)到臨床意義就言過(guò)其實(shí)了。”他解釋說(shuō),,疤痕組織上只有很少的一部分區(qū)域“嫁接”了移植的心肌細(xì)胞,,不足以產(chǎn)生很多額外的泵力。但他猜測(cè),,這些移植細(xì)胞隱藏著讓受損的受體組織重現(xiàn)活力的秘密,,事實(shí)上,有很多研究人員正在探索這種策略,,以促使受損的心臟組織自行恢復(fù),。
默里和拉弗雷姆都表示,還需要開(kāi)展更深入的研究工作,,才能進(jìn)行可移植心肌細(xì)胞的人體試驗(yàn),。對(duì)他們而言,,目前更緊迫的目標(biāo)是要尋找理想的實(shí)驗(yàn)條件,以便讓細(xì)胞更大范圍地嫁接到疤痕組織上,。(生物谷Bioon.com)
doi:10.1038/nature11317
PMC:
PMID:
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts
Yuji Shiba,1, 2, 9 Sarah Fernandes,1, 9 Wei-Zhong Zhu,1 Dominic Filice,1, 3 Veronica Muskheli,1 Jonathan Kim,1 Nathan J. Palpant,1 Jay Gantz,1, 3 Kara White Moyes,1 Hans Reinecke,1 Benjamin Van Biber,1 Todd Dardas,4 John L. Mignone,4 Atsushi Izawa,2 Ramy Hanna,4 Mohan Viswanathan,4 Joseph D. Gold,5 Michael I. Kotlikoff,6 Narine Sarvazyan,7 Matthew W. Kay,7, 8 Charles E. Murry1, 3, 4 & Michael A. Laflamme1
Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts1, 2, 3, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host–graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.