2012年09月01日 訊 /生物谷BIOON/ --成體干細(xì)胞在渦蟲(planarian)中展現(xiàn)出強(qiáng)大的治愈能力,。這種不起眼的扁蟲能夠重建任何缺失的身體部分,。但是成體干細(xì)胞如何在合適的時(shí)間內(nèi)構(gòu)建出合適的組織一直是個(gè)未知數(shù)。如今,,根據(jù)一篇刊登在Development期刊上的論文,來自美國斯托瓦斯醫(yī)學(xué)研究所(Stowers Institute for Medical Research)的研究人員描述了一種新的系統(tǒng)從而能夠允許他們追蹤渦蟲(Schmidtea mediterranea)中的干細(xì)胞,。他們發(fā)現(xiàn)渦蟲中被稱作neoblast的干細(xì)胞遷移,、增殖和開始重建由于截肢而失去的組織。
領(lǐng)導(dǎo)這項(xiàng)研究的Alejandro Sánchez Alvarado博士說,,“我們能夠證實(shí)當(dāng)組織經(jīng)歷結(jié)構(gòu)損傷時(shí),,完全強(qiáng)大的干細(xì)胞能夠遷移。當(dāng)我們說話時(shí),,這些過程很可能在你和我的體內(nèi)發(fā)生,,但是在諸如我們之類的有機(jī)體內(nèi),卻很難進(jìn)行可視化觀察,。”
干細(xì)胞有潛力提供無限數(shù)量的特化細(xì)胞從而對(duì)一系列疾病進(jìn)行再生性治療,,但是運(yùn)送人干細(xì)胞到體內(nèi)合適位置一直是一個(gè)主要挑戰(zhàn)。追蹤單個(gè)neoblast的能力有望為揭示有助于渦蟲干細(xì)胞導(dǎo)航到損傷位點(diǎn)的分子信號(hào),,并且有可能最終允許科學(xué)家們提供到達(dá)正確位置的治療性干細(xì)胞,。
在這項(xiàng)研究中,,第一作者Otto C. Guedelhoefer博士讓渦蟲(S. mediterranea)暴露在輻射當(dāng)中,其中這種輻射殺死這種渦蟲的neoblast,,同時(shí)讓其他類型的細(xì)胞不受損傷,。這些接受輻射的渦蟲在幾周之內(nèi)就出現(xiàn)萎縮和死亡,但是當(dāng)Guedelhoefer將來自另一只渦蟲的一些干細(xì)胞移植到它們的體內(nèi)之后,,這些移植的干細(xì)胞檢測(cè)損傷的存在---也是移植的位點(diǎn)---,,并從移植物中遷移出去,進(jìn)行復(fù)制和拯救它們的宿主,。不同于人類和其他哺乳動(dòng)物中存在的成體干細(xì)胞,,渦蟲干細(xì)胞在完全成熟的動(dòng)物中仍然保持多能性,而且即便當(dāng)它們遷移時(shí),,它們?nèi)匀槐3秩绱恕?/p>
但是當(dāng)Guedelhoefer只照射渦蟲身體一部分時(shí),,存活下載的干細(xì)胞不能夠檢測(cè)到損傷,也不能遷移從而修補(bǔ)這種損傷,,這就證實(shí)這些干細(xì)胞通常呆在原地,。只有當(dāng)相當(dāng)數(shù)量的接受輻射的組織發(fā)生凋亡之后,這些干細(xì)胞才遷移到損傷位點(diǎn)并開始重建這些組織,。接著,,Guedelhoefer照射渦蟲身體一部分,并用刀片將它切斷,,結(jié)果存活下來的干細(xì)胞在幾天內(nèi)就到達(dá)現(xiàn)場(chǎng),。
為了開展這些實(shí)驗(yàn),Guedelhoefer對(duì)渦蟲手術(shù)和X射線方法進(jìn)行改編,,而且他還精確地描述干細(xì)胞所在的位置,,并且利用RNA整體原位雜交(whole-mount in situ hybridization, WISH)研究它們擴(kuò)散到多遠(yuǎn)。利用WISH,,他對(duì)mRNA特異性片段進(jìn)行標(biāo)記來觀察原始的干細(xì)胞和它們的子細(xì)胞,。這種技術(shù)允許他確定多能性干細(xì)胞能夠遷移并且同時(shí)產(chǎn)生不同類型的子細(xì)胞。
接下來,,Sánchez Alvarado期待進(jìn)行遺傳篩選和移植實(shí)驗(yàn)來破壞或加強(qiáng)研究人員在這項(xiàng)研究中觀察到的細(xì)胞行為以便找出干細(xì)胞的遷移規(guī)則,。(生物谷Bioon.com)
本文編譯自Moving toward regeneration: Scientists show how pluripotent stem cells mobilize in wounded planarian worms
doi: 10.1242/dev.082099
PMC:
PMID:
Amputation induces stem cell mobilization to sites of injury during planarian regeneration
Otto C. Guedelhoefer IV and Alejandro Sánchez Alvarado
How adult stem cell populations are recruited for tissue renewal and repair is a fundamental question of biology. Mobilization of stem cells out of their niches followed by correct migration and differentiation at a site of tissue turnover or injury are important requirements for proper tissue maintenance and regeneration. However, we understand little about the mechanisms that control this process, possibly because the best studied vertebrate adult stem cell systems are not readily amenable to in vivo observation. Furthermore, few clear examples of the recruitment of fully potent stem cells, compared with limited progenitors, are known. Here, we show that planarian stem cells directionally migrate to amputation sites during regeneration. We also show that during tissue homeostasis they are stationary. Our study not only uncovers the existence of specific recruitment mechanisms elicited by amputation, but also sets the stage for the systematic characterization of evolutionarily conserved stem cell regulatory processes likely to inform stem cell function and dysfunction in higher organisms, including humans.