近日,刊登在美國《國家科學(xué)院院刊》上的一項研究宣稱,,科研人員復(fù)制了螢火蟲發(fā)光器官的結(jié)構(gòu),,設(shè)計出新型的被稱為發(fā)光二極管(LED)的小型高效燈具,從而增加了其光傳播能力,。
昆蟲表皮的納米材料能幫助它們有效地控制光偏振,、構(gòu)造色彩以及光學(xué)指數(shù),并且這些材料主要用于管理射入光,。此外,,諸如螢火蟲“燈籠”之類的生物性發(fā)光器官,在同異性交流時,,會發(fā)出強光信號,。
韓國科學(xué)技術(shù)院生物與腦工程學(xué)部的Jae-Jun Kim及其同事注意到有效的光傳播在螢火蟲的性交流過程中發(fā)揮關(guān)鍵作用。他們用電子顯微鏡研究了螢火蟲發(fā)光器官的結(jié)構(gòu),,發(fā)現(xiàn)螢火蟲的發(fā)光器官由一個反射層,、一個發(fā)光層和一個透明外層組成。而且重要的是,,與腹部的其他部分不同,,發(fā)光器的外層結(jié)構(gòu)成行,、有序排列,就像農(nóng)田中的農(nóng)作物那樣,。
Kim研究小組從螢火蟲身上獲得了靈感,,設(shè)計并制造出了一系列新型LED,它們由反射杯,、發(fā)光的LED芯片和外層有微小的,、高度有序結(jié)構(gòu)花紋的透明鏡頭組成。
測試表明,,與平滑的鏡頭不同,,這種有花紋的透鏡在全范圍可見光波長上能更好地對光進行傳導(dǎo)——甚至可以與昂貴的抗反射鍍層相媲美。同時,,能夠最有效地穿過這種經(jīng)過改造的透鏡的光波長符合螢火蟲生物冷光的中心波長,。
作者提出,這些研究結(jié)果能夠幫助促進電視,、照相手機,、汽車以及醫(yī)學(xué)和家庭照明用高功率LED的低成本透鏡的開發(fā)。(生物谷Bioon.com)
DOI:10.1073/pnas.1213331109
PMC:
PMID:
Biologically inspired LED lens from cuticular nanostructures of firefly lantern
Jae-Jun Kima, Youngseop Leea, Ha Gon Kimb, Ki-Ju Choic, Hee-Seok Kweonc, Seongchong Parkd, and Ki-Hun Jeonga,1
Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages.