來自北京大學(xué)醫(yī)學(xué)部的研究人員與美國貝勒醫(yī)學(xué)院等單位合作,,在篩選鑒定腫瘤特異性抗原方面取得重要進(jìn)展,其主要研究成果發(fā)表在最新一期的國際著名雜志《癌癥研究》(Cancer Research)上,。
腫瘤特異性抗原是一類在腫瘤組織中特異性高表達(dá),,而在所有或者大多數(shù)正常組織中不表達(dá)或低表達(dá)的蛋白。很多腫瘤特異性抗原已經(jīng)被用于對(duì)腫瘤的早期診斷,,預(yù)后評(píng)估以及被作為腫瘤治療的靶點(diǎn),。研究顯示,部分腫瘤特異性抗原在癌癥患者體內(nèi)能有效誘導(dǎo)免疫應(yīng)答,,限制腫瘤的生長和轉(zhuǎn)移,在少數(shù)患者中甚至能完全清除腫瘤,。因而篩選鑒定腫瘤特異性抗原成為腫瘤診斷和治療的研究熱點(diǎn),。
篩選腫瘤特異性抗原的現(xiàn)有方法包括重組cDNA表達(dá)文庫的血清學(xué)鑒定(SEREX),,蛋白質(zhì)組學(xué)分析和抑制性消減雜交技術(shù)(SSH)等,但這些實(shí)驗(yàn)技術(shù)的實(shí)驗(yàn)成本較高,,周期較長,,并且常常受到實(shí)驗(yàn)材料的限制,例如各種癌癥病人的血清或者腫瘤組織,。在該研究中,,由來自北京大學(xué)醫(yī)學(xué)部和美國貝勒醫(yī)學(xué)院的合作研究團(tuán)隊(duì),采用了生物信息學(xué)算法來快速篩選腫瘤特異性抗原,。
通過分析在臨床上廣泛認(rèn)可和應(yīng)用的經(jīng)典腫瘤特異性抗原的表達(dá)譜特點(diǎn),,該團(tuán)隊(duì)開發(fā)出一套獨(dú)特的被命名為HEPA(Heterogeneous Expression Profile Analysis)的算法。研究顯示,,這種算法能有效從包含數(shù)以萬計(jì)基因的人類全基因組中篩選出與經(jīng)典腫瘤特異性抗原具有相似表達(dá)譜特點(diǎn)的基因,。通過實(shí)驗(yàn)驗(yàn)證,初步得到19個(gè)新的腫瘤特異性抗原,。
隨后,,該團(tuán)隊(duì)檢測了癌癥患者血清中自發(fā)產(chǎn)生的對(duì)這些腫瘤抗原的特異性抗體。針對(duì)腫瘤自身特異性抗體豐度極低的特點(diǎn),,他們開發(fā)了一種新的血清學(xué)檢測方法PARSE (Protein A/G based reverse serum ELISA) ,。研究人員發(fā)現(xiàn),在約為4~11%的肺癌患者血清中,,有針對(duì)四個(gè)新的腫瘤特異性抗原的自身抗體,,而在健康志愿者血清中則罕見。在兩組獨(dú)立的肺癌病人血清中,,該四種腫瘤特異性抗原聯(lián)合ROC曲線的曲線下面積均達(dá)到0.71以上,,提示其可作為肺癌的聯(lián)合診斷標(biāo)志物。如果進(jìn)一步聯(lián)合肺癌其他已知的血清學(xué)標(biāo)志物,,其診斷效果很有可能會(huì)進(jìn)一步提高,。
該研究利用快速發(fā)展的生物信息學(xué)技術(shù),互聯(lián)網(wǎng)上豐富的生物數(shù)據(jù)資源,,發(fā)展了從分析腫瘤特異性抗原獨(dú)特的表達(dá)譜特點(diǎn)入手,,開發(fā)生物信息學(xué)算法用以高通量快速篩選腫瘤特異性抗原,實(shí)驗(yàn)手段驗(yàn)證其表達(dá)譜,,檢測患者血清中自發(fā)的抗腫瘤免疫反應(yīng)以確定腫瘤特異性抗原的免疫原性,,再到利用聯(lián)合標(biāo)志物診斷癌癥的一套完整思路,對(duì)腫瘤的早期診斷和腫瘤疫苗的研制具有重要的參考價(jià)值,。(生物谷Bioon.com)
doi: 10.1158/0008-5472.CAN-12-1656
PMC:
PMID:
An Integrated Genome-Wide Approach to Discover Tumor-Specific Antigens as Potential Immunologic and Clinical Targets in Cancer
Qing-Wen Xu1, Wei Zhao1, Yue Wang8,9, Maureen A. Sartor11, Dong-Mei Han2, Jixin Deng10, Rakesh Ponnala8,9, Jiang-Ying Yang3, Qing-Yun Zhang3, Guo-Qing Liao4, Yi-Mei Qu4, Lu Li5, Fang-Fang Liu6, Hong-Mei Zhao7, Yan-Hui Yin1, Wei-Feng Chen1,†, Yu Zhang1, and Xiao-Song Wang8,9
Tumor-specific antigens (TSA) are central elements in the immune control of cancers. To systematically explore the TSA genome, we developed a computational technology called heterogeneous expression profile analysis (HEPA), which can identify genes relatively uniquely expressed in cancer cells in contrast to normal somatic tissues. Rating human genes by their HEPA score enriched for clinically useful TSA genes, nominating candidate targets whose tumor-specific expression was verified by reverse transcription PCR (RT-PCR). Coupled with HEPA, we designed a novel assay termed protein A/G–based reverse serological evaluation (PARSE) for quick detection of serum autoantibodies against an array of putative TSA genes. Remarkably, highly tumor-specific autoantibody responses against seven candidate targets were detected in 4% to 11% of patients, resulting in distinctive autoantibody signatures in lung and stomach cancers. Interrogation of a larger cohort of 149 patients and 123 healthy individuals validated the predictive value of the autoantibody signature for lung cancer. Together, our results establish an integrated technology to uncover a cancer-specific antigen genome offering a reservoir of novel immunologic and clinical targets.