據(jù)英國《每日郵報》8月14日(北京時間)報道,美國科學家首次將老鼠的心臟移出并將心臟內(nèi)的細胞移除,,再用從人體皮膚獲得的誘導多能干細胞(iPS細胞)對老鼠剩下的心臟支架進行處理,,使其再次跳動起來。這項發(fā)表在《自然·通訊》雜志上的最新研究,,有助于科學家們采用同樣的方式制造出可供移植的人體器官,。
心臟病是英國最大的“殺手”,每年導致約7.4萬人喪生,。而在美國,,每34秒鐘就有1人因心臟病死亡,有500多萬人罹患心力衰竭,。
在此次實驗中,,該研究的領導者,、匹茲堡大學楊磊(音譯)博士團隊首先耗時10小時,將老鼠心臟中的所有細胞移除,。接著利用促進分化的特定生長因子,,得到來源于人體皮膚活組織的誘導多能細胞,對其編程后,,再將獲得的多能心血管前體細胞(MCP)放入剩下的心臟架構內(nèi),。楊磊說:“這一過程能使MCP進一步分化成心臟中使用的心肌細胞、內(nèi)皮細胞及光滑的肌肉細胞,。迄今為止,,還未曾有科學家做到這一點。”
幾周后,,老鼠的心臟不僅開始重建,而且也開始以每分鐘40—50次的頻率進行收縮,。不過,,科學家們補充道,要想使心臟收縮得更強以及重建心臟的導電系統(tǒng)從而使心率能正常地加速和減慢,,還需要進行更進一步的研究,。
科學家們表示,最新發(fā)現(xiàn)有望導致個性化的iPS細胞被用于器官移植中,;還可用這一模型來對治療心臟病的新藥進行測試,,或者研究胎兒心臟的發(fā)育情況。而在未來,,也能用病人的一塊皮膚組織獲得專門的MCP,,其能被用作一個生物支架,再生出一個適合移植的心臟,。
圈點
我們一直把心臟比作發(fā)動機,,但壞的發(fā)動機可通過替換零件很快修好,心臟修復卻很難,。與肝,、腎、骨等不同,,心臟不具備任何自我修復能力,,一旦發(fā)生梗塞,心肌細胞便永久壞死,,造成心臟功能缺損,。科學家一直希望從再生醫(yī)學和組織工程學獲得幫助,,實現(xiàn)像替換零件一樣修復心臟缺損,。本研究就開辟了這樣一條道路,即通過MCP進行心臟“零件”的生產(chǎn),力求使治療心臟病像修發(fā)動機一樣更加安全,、簡單和便宜,。當然,類似方法也可用于其他器官,。(生物谷 Bioon.com)
生物谷推薦的英文摘要
Nature Communications doi:10.1038/ncomms3307
Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells
Tung-Ying Lu, Bo Lin, Jong Kim, Mara Sullivan, Kimimasa Tobita, Guy Salama & Lei Yang
Heart disease is the leading cause of death in the world. Heart tissue engineering holds a great promise for future heart disease therapy by building personalized heart tissues. Here we create heart constructs by repopulating decellularized mouse hearts with human induced pluripotent stem cell-derived multipotential cardiovascular progenitor cells. We show that the seeded multipotential cardiovascular progenitor cells migrate, proliferate and differentiate in situ into cardiomyocytes, smooth muscle cells and endothelial cells to reconstruct the decellularized hearts. After 20 days of perfusion, the engineered heart tissues exhibit spontaneous contractions, generate mechanical force and are responsive to drugs. In addition, we observe that heart extracellular matrix promoted cardiomyocyte proliferation, differentiation and myofilament formation from the repopulated human multipotential cardiovascular progenitor cells. Our novel strategy to engineer personalized heart constructs could benefit the study of early heart formation or may find application in preclinical testing.