生物谷報道:美國康奈爾大學的研究人員一項最新研究,,回答了有關DNA雙鏈如何分開并進行基因拷貝過程的一個基礎性的問題,,即DNA在復制過程中是如何在酶的作用下解開雙螺旋結(jié)構(gòu)的。這項發(fā)表在最新一期6月29日Cell雜志上,,的作用,。這項研究發(fā)現(xiàn)解旋酶(helicase)似乎對它結(jié)合的雙鏈交叉位置施加壓力(主動地),從而將DNA雙鏈分開,。研究人員解釋說,,簡單的被動解鏈機理是無法解釋他們獲得的數(shù)據(jù)的。
領導該項研究的是美國康奈爾大學的物理學副教授Michelle Wang,,她的小組檢驗了在DNA代謝過程中起重要作用的解旋酶(helicase)的工作機制,。
解旋酶缺陷的發(fā)生與多種人類疾病有關,它們與所有DNA和RNA代謝過程的關系尤其密切,。長期以來,,科學家知道,解旋酶位于DNA雙鏈叉狀分離的位置,,有些類似于拉鏈的拉頭,。不過,,對于解旋酶是主動起分離作用,還是被動地等待DNA雙鏈自己打開,,科學家一直存在爭執(zhí),。
在最新的研究中,科學家發(fā)現(xiàn),,解旋酶確實為雙鏈分離出了力,。Michelle Wang表示,“被動解旋機制不能解釋我們的實驗數(shù)據(jù),。解旋酶是一個主動的‘發(fā)動機’,。”
在實驗中,研究人員將DNA雙鏈的一端固定在顯微鏡的蓋玻片上,,另一端固定在一顆微米尺度的塑料珠中,,并利用一束激光控制珠子的位置。通過這一裝置,,研究人員能夠精確測定DNA單鏈中的張力,。他們發(fā)現(xiàn),隨著解旋酶的移動和雙鏈的打開,,DNA鏈中的張力變小了,。在將實驗結(jié)論與兩種理論預言進行比較后,科學家確定,,解旋酶在這一過程中是主動起作用的,。
研究人員還發(fā)現(xiàn),細胞中的DNA解旋進行很快,,而實驗中卻要慢得多,。Michelle Wang認為,一定還有其他的蛋白酶與解旋酶一道,,共同完成雙鏈分離的過程,。(生物谷www.bioon.com)
原始出處:
Cell, Vol 129, 1299-1309, 29 June 2007
Article
Single-Molecule Studies Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase
Daniel S. Johnson,1 Lu Bai,1 Benjamin Y. Smith,1 Smita S. Patel,2 and Michelle D. Wang1,
1 Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
2 Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
Corresponding author
Michelle D. Wang
[email protected]
Helicases are molecular motors that separate DNA strands for efficient replication of genomes. We probed the kinetics of individual ring-shaped T7 helicase molecules as they unwound double-stranded DNA (dsDNA) or translocated on single-stranded DNA (ssDNA). A distinctive DNA sequence dependence was observed in the unwinding rate that correlated with the local DNA unzipping energy landscape. The unwinding rate increased ∼10-fold (approaching the ssDNA translocation rate) when a destabilizing force on the DNA fork junction was increased from 5 to 11 pN. These observations reveal a fundamental difference between the mechanisms of ring-shaped and nonring-shaped helicases. The observed force-velocity and sequence dependence are not consistent with a simple passive unwinding model. However, an active unwinding model fully supports the data even though the helicase on its own does not unwind at its optimal rate. This work offers insights into possible ways helicase activity is enhanced by associated proteins.