過度螺旋的電話線會使總長度變短,,限制通話人移動的距離,。St.Jude兒童研究醫(yī)院Delft大學(xué)研究人員說,,喜樹堿(camptothecins,,可用以治療癌癥)殺滅癌細胞的機理與此相似,。拓撲異構(gòu)酶(topotecan poisoning)的拓撲替康(topotecan,TPT)中毒,是通過迫使DNA堆積超螺旋激發(fā)細胞自殺的,。
利用名為磁性鑷子(magnetic tweezers)和酵母細胞,,研究人員發(fā)現(xiàn)喜樹堿類藥物拓撲替康(topotecan)通過抑制DNA拓撲異構(gòu)酶I解螺開DNA雙螺旋,殺滅癌細胞,。緊密扭曲的DNA雙鏈被稱作超螺旋(supercoils),,從過度纏繞的DNA分子上突出出來,如同過度纏繞的電話線的突出部份,。如果這些超螺旋積聚并“頑固不化”,,那么細胞在準備分裂而欲將DNA雙鏈分開時會死亡。
在這項突破性研究中,,研究人員利用微型磁性鑷子監(jiān)控拓撲異構(gòu)酶I引起的單個DNA分子的長度變化,研究單個拓撲替康分子與酶-DNA復(fù)合體相結(jié)合,,改變DNA解鏈狀態(tài)的方式,。根據(jù)這些結(jié)果,研究人員發(fā)展了超螺旋理論,,解釋藥物殺滅癌細胞的機理,,然后在酵母細胞中檢測該理論。文章刊登于近期Nature雜志,。
在細胞分裂之前,,一個細胞機器拉開DNA雙鏈,,將兩條連分為叉骨狀的復(fù)制叉。雙鏈分離是染色體復(fù)制的關(guān)鍵步驟,,但這會增加復(fù)制叉頭部DNA的張力,,引起其彎曲為雙螺旋。為保證復(fù)制叉持續(xù)拆開雙鏈DNA,,細胞利用拓撲異構(gòu)酶I在超螺旋DNA兩條鏈中的一條的核酸骨架上開出一個臨時性的刻痕,,這樣消除了超螺旋,使復(fù)制叉能夠繼續(xù)分開雙鏈,。拓撲替康恰恰是利用了細胞準備分開雙鏈時拓撲異構(gòu)酶I與雙鏈DNA結(jié)合的性質(zhì),。
已知道拓撲替康通過與拓撲異構(gòu)酶和DNA鏈上的刻痕結(jié)合,捕獲拓撲異構(gòu)酶,。拓撲替康-拓撲異構(gòu)酶-DNA復(fù)合體改變?yōu)檎系K物,,抑制復(fù)制叉前進。目前的流行觀點認為,,拓撲替康殺滅癌細胞很容易,,因為復(fù)制叉與捕獲的拓撲異構(gòu)酶沖突。Bjornsti的研究結(jié)果顯示,,復(fù)制叉頭部積聚的正超螺旋才是細胞自殺的主要原因,。
研究人員利用磁性鑷子技術(shù),將磁珠上的雙鏈DNA分子的一端綁定在玻璃表面,,另一端保持靜止,,然后旋轉(zhuǎn)一個罩在磁珠上部的微型磁鐵,結(jié)果攜帶DNA的磁珠跟著旋轉(zhuǎn),,將DNA扭曲為超螺旋,,將其長度縮減到不到原來的1/7。
向DNA添加拓撲異構(gòu)酶,,超螺旋會在幾秒鐘內(nèi)解開,,恢復(fù)原長。這說明酶在超螺旋上形成了一個缺口,,消除了張力,,使DNA伸展到原長。但存在拓撲替康時,,拓撲異構(gòu)酶解開DNA的速度會下降20倍,。然而,奇怪的是藥物結(jié)合減慢拓撲異構(gòu)酶解開過度纏繞的DNA(正超螺旋)比DNA鏈重新纏繞為負超螺旋還要多,。
研究人員發(fā)現(xiàn)拓撲替康偏向于減慢正超螺旋DNA的解開速度,,提示DNA超螺旋實際上是抑制復(fù)制叉前進,刺激細胞死亡,。Bjornsti等決定通過研究喜樹堿(拓撲替康是喜樹堿的一個類似物或相關(guān)藥物)對處于基因表達過程中的酵母細胞的效果,,檢測這個模型,。Bjornsti小組首先將雙鏈DNA環(huán)(質(zhì)粒)插入酵母細胞中,得到一個研究喜樹堿效果的模型,。
基因表達過程中,,DNA鏈是分開的,細胞能夠?qū)⑦z傳信息拷貝到RNA中,。與DNA復(fù)制一樣,,基因表達需要DNA鏈的伸展,不同的是,,轉(zhuǎn)錄機器產(chǎn)生的是mRNA,。隨著基因轉(zhuǎn)錄,DNA的解開在轉(zhuǎn)錄機器的前方形成正超螺旋,,后方形成負超螺旋,。
當研究人員添加拓撲異構(gòu)酶后,正超螺旋和負超螺旋以相同的速度消失,,似乎是正超螺旋的消失是由與之相似的負超螺旋的消失平衡的,。當再加入藥物喜樹堿后,拓撲異構(gòu)酶解開正超螺旋的速度比負超螺旋消失的速度慢,。這種現(xiàn)象證明拓撲異構(gòu)酶的喜樹堿(或拓撲替康)中毒,,偏愛于刺激正超螺旋在解開DNA的復(fù)合體(如轉(zhuǎn)錄機器和復(fù)制叉)的頭部聚積。
然而,,喜樹堿不會引起正超螺旋在酵母細胞中聚集,,酵母細胞表達的拓撲異構(gòu)酶對這種藥物有抗性。這進一步證明喜樹堿類物質(zhì)如拓撲替康,,通過抑制拓撲異構(gòu)酶解開正超螺旋而將細胞殺滅,。
原始出處:
Nature 448, 213-217 (12 July 2007) | doi:10.1038/nature05938; Received 6 January 2007; Accepted 15 May 2007; Published online 24 June 2007
Antitumour drugs impede DNA uncoiling by topoisomerase I
Daniel A. Koster1, Komaraiah Palle2, Elisa S. M. Bot1, Mary-Ann Bjornsti2 & Nynke H. Dekker1
Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Department of Molecular Pharmacology, St Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, Tennessee 38105, USA
Correspondence to: Nynke H. Dekker1 Correspondence and requests for materials should be addressed to N.H.D. (Email: [email protected]).
Top of page
Increasing the ability of chemotherapeutic drugs to kill cancer cells is often hampered by a limited understanding of their mechanism of action. Camptothecins, such as topotecan, induce cell death by poisoning DNA topoisomerase I, an enzyme capable of removing DNA supercoils1, 2, 3, 4. Topotecan is thought to stabilize a covalent topoisomerase–DNA complex5, 6, 7, rendering it an obstacle to DNA replication forks2, 3, 8, 9. Here we use single-molecule nanomanipulation to monitor the dynamics of human topoisomerase I in the presence of topotecan. This allowed us to detect the binding and unbinding of an individual topotecan molecule in real time and to quantify the drug-induced trapping of topoisomerase on DNA. Unexpectedly, our findings also show that topotecan significantly hinders topoisomerase-mediated DNA uncoiling, with a more pronounced effect on the removal of positive (overwound) versus negative supercoils. In vivo experiments in the budding yeast verified the resulting prediction that positive supercoils would accumulate during transcription and replication as a consequence of camptothecin poisoning of topoisomerase I. Positive supercoils, however, were not induced by drug treatment of cells expressing a catalytically active, camptothecin-resistant topoisomerase I mutant. This combination of single-molecule and in vivo data suggests a cytotoxic mechanism for camptothecins, in which the accumulation of positive supercoils ahead of the replication machinery induces potentially lethal DNA lesions.