生物谷報(bào)道:來自美國卡內(nèi)基研究院(Carnegie Institution),中科院植物研究所光合作用與環(huán)境分子生理學(xué)重點(diǎn)實(shí)驗(yàn)室(Key Laboratory of Photosynthesis and Environmental Molecular Physiology),,加州大學(xué)舊金山分校,,河北師范大學(xué),斯坦福大學(xué)等處的研究人員提出磷酸化BR轉(zhuǎn)錄因子的有效抑制需要14-3-3蛋白的結(jié)合,,從而證明了BR對(duì)于基因表達(dá)和職務(wù)生長的調(diào)控需要復(fù)合性機(jī)制,。這一研究成果公布在Developmental Cell雜志上。
文章的通訊作者是來自卡內(nèi)基研究院的王志勇教授,,其早年畢業(yè)于蘭州大學(xué),,主要從事植物激素信號(hào)傳導(dǎo)研究,參予研究的還有植物研究所白明義等人,。
同時(shí)他們也在PNAS雜志上發(fā)表了相關(guān)研究成果,,他們通過RNAi技術(shù)對(duì)OsBZR1和14-3-3蛋白進(jìn)行研究,找到一種新的調(diào)控OsBZR1活性的機(jī)制,。這些機(jī)制的了解可使人們通過基因工程的方法精細(xì)調(diào)控水稻體內(nèi)的油菜素內(nèi)酯響應(yīng),,為水稻高產(chǎn)育種提供重要的理論依據(jù)和新的操作手段。
1970年,,美國的米切爾(Mitchell)等報(bào)道在油菜的花粉中發(fā)現(xiàn)了一種新的生長物質(zhì),它能引起菜豆幼苗節(jié)間伸長,、彎曲,、裂開等異常生長反應(yīng),并將其命名為油菜素(brassin),。格羅夫(Grove)等(1979)用227kg油菜花粉提取得到10mg的高活性結(jié)晶物,因是甾醇內(nèi)酯化合物而將其命名為油菜素內(nèi)酯(brassinolide,BR1),。此后油菜素內(nèi)酯及多種結(jié)構(gòu)相似的化合物紛紛從多種植物中被分離鑒定,,這些以甾醇為基本結(jié)構(gòu)的具有生物活性的天然產(chǎn)物統(tǒng)稱為油菜素甾體類化合物(brassinosteroids,,BRs),,BR在植物體內(nèi)含量極少,,但生理活性很強(qiáng),。?
BR在植物界中普遍存在,。油菜花粉是BR1的豐富來源,但其含量極低,,只有100~200μg·kg-1,,BR1也存在于其他植物中。BR2在已分析的植物中分布最廣,。BR主要用于增加農(nóng)作物產(chǎn)量,減輕環(huán)境脅迫,,有些也可用于插枝生根和花卉保鮮。隨著對(duì)BR研究的深入和更有效而成本更低的人工合成類似物的出現(xiàn),,BR在農(nóng)業(yè)生產(chǎn)上的應(yīng)用必將越來越廣泛,,一些科學(xué)家已提議將油菜素甾醇類列為植物的第六類激素,。
BR可以調(diào)控植物生長,,這主要是通過誘導(dǎo)兩個(gè)關(guān)鍵轉(zhuǎn)錄因子:BZR1和BZR2/BES1的去磷酸化來調(diào)控基因表達(dá),,這個(gè)信號(hào)傳導(dǎo)途徑包含了細(xì)胞表面受體BRI1和BAK1,,以及一個(gè)GSK3激酶BIN2。但是至今BR如何調(diào)控磷酸化BZR1/BZR2活性的并不清楚,。
在這篇文章中,,研究人員發(fā)現(xiàn)BZR1/BZR2經(jīng)BIN2催化的磷酸化不僅抑制了DNA的結(jié)合,,而且促使了DNA與14-3-3蛋白的結(jié)合,。BZR1上一個(gè)BIN2磷酸化位點(diǎn)的突變會(huì)擾亂14-3-3結(jié)合,從而導(dǎo)致BZR1蛋白核定位增強(qiáng),,加強(qiáng)了轉(zhuǎn)基因植物中BR應(yīng)答,。而且BR缺陷也增加了細(xì)胞質(zhì)定位,,施用BR可以誘導(dǎo)BZR1/BZR2的快速核定位。因此研究人員認(rèn)為14-3-3結(jié)合對(duì)于磷酸化BR轉(zhuǎn)錄因子的有效抑制是必需的,,從而這一研究證明了BR對(duì)于基因表達(dá)和職務(wù)生長的調(diào)控需要復(fù)合性機(jī)制,。
原始出處:
Developmental Cell, Vol 13, 177-189, 07 August 2007
Article
An Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis
Srinivas S. Gampala,1 Tae-Wuk Kim,1 Jun-Xian He,1 Wenqiang Tang,1 Zhiping Deng,1 Mingyi-Yi Bai,2 Shenheng Guan,3 Sylvie Lalonde,1 Ying Sun,1,4 Joshua M. Gendron,1,5 Huanjing Chen,1 Nakako Shibagaki,1 Robert J. Ferl,6 David Ehrhardt,1 Kang Chong,2 Alma L. Burlingame,3 and Zhi-Yong Wang1,
1 Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA
2 Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
3 Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
4 Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang, Hebei 050016, China
5 Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
6 Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
Corresponding author
Zhi-Yong Wang
[email protected]
Brassinosteroids (BRs) are essential hormones for plant growth and development. BRs regulate gene expression by inducing dephosphorylation of two key transcription factors, BZR1 and BZR2/BES1, through a signal transduction pathway that involves cell-surface receptors (BRI1 and BAK1) and a GSK3 kinase (BIN2). How BR-regulated phosphorylation controls the activities of BZR1/BZR2 is not fully understood. Here, we show that BIN2-catalyzed phosphorylation of BZR1/BZR2 not only inhibits DNA binding, but also promotes binding to the 14-3-3 proteins. Mutations of a BIN2-phosphorylation site in BZR1 abolish 14-3-3 binding and lead to increased nuclear localization of BZR1 protein and enhanced BR responses in transgenic plants. Further, BR deficiency increases cytoplasmic localization, and BR treatment induces rapid nuclear localization of BZR1/BZR2. Thus, 14-3-3 binding is required for efficient inhibition of phosphorylated BR transcription factors, largely through cytoplasmic retention. This study demonstrates that multiple mechanisms are required for BR regulation of gene expression and plant growth.