病患者使用的所有藥物的大約一半是通過靶向一個特定的“停泊港灣”(受體)來起作用的,,這些藥物引導(dǎo)細(xì)胞機(jī)器來治愈疾病,。來自斯坦福大學(xué)醫(yī)學(xué)院和Scirpps研究所的研究人員已經(jīng)在分子水平上確定出其中一個受體給予藥物對這個過程的更大的控制能力。該文章發(fā)表在10月25日的《科學(xué)快訊》(Science Express)上,。
能夠確定出這些叫做G蛋白偶聯(lián)受體的“停靠站”的結(jié)構(gòu)則是一個科學(xué)壯舉,。這種結(jié)果的確定能夠知道人們設(shè)計出可以精確地確定受體結(jié)合的新一代藥物,。藥物的精確結(jié)合能夠刺激或抑制特定受體的正常活性,,從而能更有力地治療并使副作用最小化,。
由Kobika教授領(lǐng)導(dǎo)的斯坦福的研究組在文章中給出了高分辨率的beta 2-adrenergic受體的高分辨率結(jié)構(gòu)。這篇文章是21日發(fā)表在《自然》雜志的文章的后續(xù),,該文章闡明了這個受體較低分辨率的結(jié)構(gòu),但沒有看到高分辨率所需的修飾,。
G蛋白偶聯(lián)受體家族成員超過300種,,它們構(gòu)成了細(xì)胞膜中的最大的蛋白質(zhì)家族。這些細(xì)胞受體與生物交流分子——激素,、神經(jīng)遞質(zhì)和細(xì)胞激素相互反應(yīng),,并且充當(dāng)促進(jìn)或關(guān)閉一根多功能生物過程的分子開關(guān),。G蛋白偶聯(lián)受體在血壓調(diào)節(jié),、炎癥和心理疾病中扮演關(guān)鍵角色。
現(xiàn)在藥物研發(fā)中60~70%的目標(biāo)蛋白是G蛋白偶聯(lián)受體(GPCRs),。傳統(tǒng)上的藥物研發(fā)過程是對化合物進(jìn)行篩選,,尋找更有效的新藥物分子。而基于化合物結(jié)構(gòu)的藥物設(shè)計,,雖然為研發(fā)提供了一個目標(biāo),;但是由于GPCRs難于進(jìn)行表達(dá)、提純和結(jié)晶,,以至于它們的精細(xì)結(jié)構(gòu)被了解的很少,,因此將結(jié)構(gòu)依賴性的藥物設(shè)計方法應(yīng)用到GPCRs上困難重重,。進(jìn)行這方面研究的有專注于特定GPCRs的單個實驗室,,但現(xiàn)在己開始以大型網(wǎng)絡(luò)組織的形式建立研究結(jié)構(gòu)基因組的聯(lián)盟,囊括蛋白表達(dá),、提純和結(jié)晶各個領(lǐng)域的專家,。其中國內(nèi)和國際上的不少聯(lián)盟都已將GPCRs納入其研究項目。現(xiàn)在,,GPCRs的表達(dá)系統(tǒng)有好幾種,,產(chǎn)量已達(dá)毫克級,純度也相當(dāng)高,。但其在結(jié)晶上的突破仍需技術(shù)上的創(chuàng)新,。
藥物產(chǎn)業(yè)將其財力的主要一部分投入到GPCRs研究中,將其作為新藥研發(fā)的目標(biāo)蛋白?,F(xiàn)在,,三分之二的藥物研制項目將目光集中在GPCRs上,前200種藥物中有四分之一是基于GPCRs的
原始出處:
Published Online October 25, 2007
Science DOI: 10.1126/science.1150609
Submitted on September 17, 2007
Accepted on October 11, 2007
GPCR Engineering Yields High-Resolution Structural Insights into 2 Adrenergic Receptor Function
Daniel M. Rosenbaum 1, Vadim Cherezov 2, Michael A. Hanson 2, Søren G. F. Rasmussen 1, Foon Sun Thian 1, Tong Sun Kobilka 1, Hee-Jung Choi 3, Xiao-Jie Yao 1, William I. Weis 3, Raymond C. Stevens 2*, Brian K. Kobilka 1*
1 Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
2 Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
3 Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
* To whom correspondence should be addressed.
Raymond C. Stevens , E-mail: [email protected]
Brian K. Kobilka , E-mail: [email protected]
These authors contributed equally to this work.
The 2 adrenergic receptor (2AR) is a well-studied prototype for G protein-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the 2AR and to facilitate its crystallization, we engineered a 2AR fusion protein in which T4 Lysozyme replaces most of the third intracellular loop of the GPCR ("2AR-T4L"), and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of 2AR-T4L provides insights into inverse agonist binding and structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.